В вещественном случае основание степени — некоторое неотрицательное вещественное число (для отрицательных чисел возведение в вещественную нецелочисленную степень не определено), а аргументом функции является вещественный показатель степени.
В теории комплексных функций рассматривается более общий случай, когда аргументом и показателем степени может быть произвольное комплексное число.
В самом общем виде — , введена Лейбницем в 1695 г.
Особо выделяется случай, когда в качестве основания степени выступает число e. Такая функция называется экспонентой (вещественной или комплексной). При этом из-за того, что любое положительное основание может быть представлено в виде степени числа е (), понятие «экспонента» часто употребляют как синоним «показательной функции».
Пусть — неотрицательное вещественное число, — рациональное число: . Тогда определяется, исходя из свойств степени с рациональным показателем, по следующим правилам.
Отметим, что функцию можно иначе представить в виде ряда: (справедливость легко установить почленным дифференцированием):
Откуда имеем более точное приближение:
Единственность числа легко показать, варьируя . Действительно, если пройдёт где-то выше, чем , то на том же промежутке найдётся область, где .
Дифференцирование:
Используя функцию натурального логарифма, можно выразить показательную функцию с произвольным положительным основанием через экспоненту. По свойству степени: , откуда по свойству экспоненты и по правилу дифференцирования сложной функции:
Неопределённый интеграл:
Потенцирование и антилогарифм
Потенцирование (от нем.potenzieren[К 1]) — нахождение числа по известному значению его логарифма[1], то есть решение уравнения . Из определения логарифма вытекает, что , таким образом, возведение в степень может быть названо другими словами «потенцированием по основанию », или вычислением показательной функции от .
Антилогарифм[2] числа x — результат потенцирования, то есть число, логарифм которого (при заданном основании ) равен числу [2][3]:
Аналогично логарифмам, антилогарифм по основанию или 10 называется натуральным[6] или десятичным, соответственно.
Антилогарифм также называют обращённым логарифмом[3].
В инженерных калькуляторах потенцирование стандартно представлено в виде двух функций: и .
Комплексная функция
Для расширения экспоненты на комплексную плоскость определим её с помощью того же ряда, заменив вещественный аргумент на комплексный:
Эта функция имеет те же основные алгебраические и аналитические свойства, что и вещественная. Отделив в ряде для вещественную часть от мнимой, мы получаем знаменитую формулу Эйлера:
Отсюда вытекает, что комплексная экспонента периодична вдоль мнимой оси:
Показательная функция с произвольным комплексным основанием и показателем степени легко вычисляется с помощью комплексной экспоненты и комплексного логарифма.
Пример: ; поскольку (главное значение логарифма), окончательно получаем: .