Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени и показателя находит неизвестное основание . Вторая обратная операция — логарифмирование, она по известным значениям степени и основания находит неизвестный показатель . Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень.
Запись обычно читается как «a в -й степени» или «a в степени n». Например, читается как «десять в четвёртой степени», читается как «десять в степени три вторых (или: полтора)».
Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, читается как «десять в квадрате», читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо , древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].
Число, являющееся результатом возведения натурального числа в -ую степень, называется точной -ой степенью. В частности, число, являющееся результатом возведения натурального числа в квадрат (куб), называется точным квадратом (кубом). Точный квадрат также называется полным квадратом.
Свойства
Основные свойства
Все приведённые ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[3]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени.➤
Запись не обладает свойством ассоциативности (сочетательности), то есть, в общем случае, Например, , а . В математике принято считать запись равнозначной , а вместо можно писать просто , пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения[какой?].
Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, , например, , но Причём во втором случае, когда основание больше показателя, результат получается меньше, чем в обратном случае: иначе говоря, когда ,
Таблица натуральных степеней небольших чисел
n
n2
n3
n4
n5
n6
n7
n8
n9
n10
2
4
8
16
32
64
128
256
512
1024
3
9
27
81
243
729
2187
6561
19 683
59 049
4
16
64
256
1024
4096
16 384
65 536
262 144
1 048 576
5
25
125
625
3125
15 625
78 125
390 625
1 953 125
9 765 625
6
36
216
1296
7776
46 656
279 936
1 679 616
10 077 696
60 466 176
7
49
343
2401
16 807
117 649
823 543
5 764 801
40 353 607
282 475 249
8
64
512
4096
32 768
262 144
2 097 152
16 777 216
134 217 728
1 073 741 824
9
81
729
6561
59 049
531 441
4 782 969
43 046 721
387 420 489
3 486 784 401
10
100
1000
10 000
100 000
1 000 000
10 000 000
100 000 000
1 000 000 000
10 000 000 000
Расширения
Целая степень
Операция обобщается на произвольные целые числа, включая отрицательные и ноль[4]::
Результат не определён при и .
Рациональная степень
Возведение в рациональную степень где — целое число, а — натуральное, положительного числа определяется следующим образом[4]:
.
Степень с основанием, равным нулю, определяют только для положительного рационального показателя.
Для отрицательных степень с дробным показателем не рассматривается.
Следствие: Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.
Вещественная степень
Множество вещественных чисел — непрерывноеупорядоченное поле, обозначается . Множество вещественных чисел не является счётным, его мощность называется мощностью континуума. Арифметические операции над вещественными числами представимых бесконечными десятичными дробями определяются как непрерывное продолжение[5] соответствующих операций над рациональными числами.
Если даны два вещественных числа, представимые бесконечными десятичными дробями (где — положительное):
определённые соответственно фундаментальными последовательностями рациональных чисел (удовлетворяющие условию Коши), обозначенные как: и , то их степенью называют число , определённое степенью последовательностей и :
,
вещественное число , удовлетворяет следующему условию:
Таким образом степенью вещественного числа является такое вещественное число которое содержится между всеми степенями вида с одной стороны и всеми степенями вида с другой стороны.
Степень с основанием, равным нулю, определяют только для положительного вещественного показателя.
Для отрицательных степень с вещественным показателем не рассматривается.
На практике для того, чтобы возвести число в степень , необходимо заменить их с требуемой точностью приближёнными рациональными числами и . За приближенное значение степени берут степень указанных рациональных чисел . При этом не важно, с какой стороны (по недостатку или по избытку) взятые рациональные числа приближают и .
Пример возведения в степень , с точностью до 3-го знака после запятой:
Округляем данные числа до 4-го знака после запятой (для повышения точности вычислений);
Получаем: ;
возводим в степень: ;
Округляем до 3-го знака после запятой: .
Полезные формулы:
Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции , и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.
Комплексная степень
Возведение комплексного числа в натуральную степень выполняется обычным умножением в тригонометрической форме. Результат однозначен:
Для нахождения степени произвольного комплексного числа в алгебраической форме можно воспользоваться формулой бинома Ньютона (справедливой и для комплексных чисел):
.
Заменяя степени в правой части формулы их значениями в соответствии с равенствами: , получим:
При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[8]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество в степень Слева получится справа, очевидно, 1. В итоге: что, как легко проверить, неверно. Причина ошибки: возведение в степень даёт и слева, и справа бесконечное множество значений (при разных ), поэтому правило здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа отсюда видно, что корень ошибки — путаница значений этого выражения при и при
Степень как функция
Разновидности
Поскольку в выражении используются два символа ( и ), то его можно рассматривать как одну из трёх функций.
Функция переменной (при этом — постоянная-параметр). Такая функция называется показательной (частный случай — экспонента). Обратная функция — логарифм.
Функция двух переменных Отметим, что в точке эта функция имеет неустранимый разрыв. В самом деле, вдоль положительного направления оси где она равна единице, а вдоль положительного направления оси где она равна нулю.
Выражение (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла, поскольку, как указано выше, функция в точке (0, 0) разрывна. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:
можно записать короче:
Следует предостеречь, что соглашение чисто символическое, и оно не может использоваться ни в алгебраических, ни в аналитических преобразованиях из-за разрывности функции в этой точке.
История
Обозначение
В Европе сначала степень величины записывали словесными сокращениями (q или Q обозначало квадрат, c или C — куб, bq или qq — биквадрат, то есть 4-я степень и т. д.) или как произведение — например, изображалось как Отред записывал следующим образом: (если неизвестная всего одна, ей часто не присваивался буквенный значок)[9]. Немецкая школа коссистов для каждой степени неизвестной предлагала особый готический значок.
В XVII веке постепенно стала преобладать идея явно указывать показатель степени. Жирар (1629 год) для возведения в степень числа ставил показатель в круглых скобках перед этим числом, а если числа правее показателя не было, то это значило, что подразумевается наличие неизвестного в указанной степени[10]; например, у него означало . Варианты размещения показателя степени предлагали Пьер Эригон и шотландский математик Джеймс Юм, они записывали в виде и соответственно[11].
Современная запись показателя степени — правее и выше основания — введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2 (возведение в квадрат ещё долгое время обозначалось по-старому, произведением). Позднее Валлис и Ньютон (1676) распространили декартову форму записи степени на отрицательные и дробные показатели, трактовка которых к этому времени уже была известна из трудов Орема, Шюке, Стевина, Жирара и самого Валлиса. К началу XVIII столетия альтернативы для записи степеней «по Декарту», как выразился Ньютон в «Универсальной арифметике», «вышли из моды» (out of fashion). Показательная функция, то есть возведение в переменную степень, появилась сначала в письмах, а потом и в трудах Лейбница (1679). Возведение в мнимую степень обосновал Эйлер (1743)[11][12].
Запись возведения в степень в языках программирования
С появлением компьютеров и компьютерных программ возникла проблема, состоящая в том, что в тексте компьютерных программ невозможно записать степень в «двухэтажном» виде. В связи с этим изобрели особые значки для обозначения операции возведения в степень. Первым таким значком были две звёздочки: «**», используемые в языке Фортран. В появившемся несколько позже языке Алгол использовался значок стрелки: «↑» (стрелки Кну́та). В языке Бейсик предложен символ «^» («циркумфлекс», он же «карет»), который приобрёл наибольшую популярность; его часто используют при написании формул и математических выражений не только в языках программирования и компьютерных системах, но и в простом тексте. Примеры:
3^2 = 9; 5^2 = 25; 2^3 = 8; 5^3 = 125.
Иногда в компьютерных системах и языках программирования значок возведения в степень имеет левую ассоциативность, в отличие от принятого в математике соглашения о правой ассоциативности возведения в степень.
То есть некоторые языки программирования (например, программа Excel) могут воспринимать запись a^b^c, как (a^b)^c, тогда как другие системы и языки (например, Haskell, Perl, Wolfram|Alpha и многие другие) обработают эту запись справа налево: a^(b^c), как это принято в математике: .
Некоторые знаки возведения в степень в языках программирования и компьютерных системах:
Возведение в степень с натуральным показателем можно определить не только для чисел, но и для нечисловых объектов, для которых определено умножение — например, к матрицам, линейным операторам, множествам (относительно декартова произведения, см. декартова степень).
Обычно эта операция рассматривается в некотором мультипликативном моноиде (полугруппе с единицей) и определяется индуктивно[13] для любого :
↑ 12Степень // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 221.
↑Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции / Пер. с голл. И. Н. Веселовского. — М., 1959. — С. 165—167. — 456 с.
↑Поскольку на множестве вещественных чисел уже введено отношение линейного порядка, то мы можем определить топологию числовой прямой: в качестве открытых множеств возьмём всевозможные объединения интервалов вида
↑В разговорной речи иногда говорят, например, что — «a умноженное само на себя три раза», имея в виду, что берётся три множителя . Это не совсем точно и может привести к двусмысленности, так как количество операций умножения будет на одну меньше: (три множителя, но две операции умножения). Часто, когда говорят «a умноженное само на себя три раза», имеют в виду количество умножений, а не множителей, то есть См. Август Давидов.Начальная алгебра. — Типографія Э. Лисслер и Ю. Роман, 1883-01-01. — С. 6. — 534 с. Архивировано 31 мая 2016 года.. Чтобы избежать двусмысленности, можно говорить, к примеру: третья степень — это когда «число три раза входит в умножение».
Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник. — 3-е изд. — СПб.: ЛКИ, 2008. — 248 с. — ISBN 978-5-382-00839-4.
Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978. — 509 с.