Непрерывная дробь (или цепная дробь) — это конечное или бесконечное математическое выражение вида
где есть целое число, а все остальные — натуральные числа (положительные целые)[1]. При этом числа называются неполными частными или элементами цепной дроби[2].
Главное (но далеко не единственное) назначение непрерывных дробей состоит в том, что они позволяют находить хорошие приближения вещественных чисел в виде обычных дробей. Непрерывные дроби широко используются в теории чисел и вычислительной математике, а их обобщения оказались чрезвычайно полезны в математическом анализе и других разделах математики. Используются также в физике, небесной механике, технике и других прикладных сферах деятельности.
Для рационального числа это разложение оборвётся по достижении нулевого для некоторого . В этом случае представляется конечной цепной дробью . Эффективным алгоритмом для преобразования обычной дроби в цепную является алгоритм Евклида. Представление рационального числа в виде непрерывной дроби неоднозначно: если приведённый здесь алгоритм даёт непрерывную дробь , то непрерывная дробь соответствует тому же самому числу.
Для иррационального все величины будут ненулевыми и процесс разложения можно продолжать бесконечно. В этом случае представляется бесконечной цепной дробью . Если последовательность состоит из бесконечно повторяющегося набора одних и тех же чисел (периода), то цепная дробь называется периодической. Число представляется бесконечной периодической цепной дробью тогда и только тогда, когда оно является квадратичной иррациональностью, то есть иррациональным корнем квадратного уравнения с целыми коэффициентами.
Подходящие дроби
n-й («энной») подходящей дробью для цепной дроби называется конечная цепная дробь , значение которой есть некоторое рациональное число . Подходящие дроби с чётными номерами образуют возрастающую последовательность, предел которой равен . Аналогично, подходящие дроби с нечётными номерами образуют убывающую последовательность, предел которой также равен . Таким образом, значение цепной дроби всегда находится между значениями соседних подходящих дробей.
Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел. А именно, если вещественное число разложить в цепную дробь, то её подходящие дроби будут удовлетворять неравенству
Интересный результат, который следует из того, что выражение непрерывной дроби для не использует чисел, больших 1, состоит в том, что является одним из самых «плохо» приближаемых чисел. Точнее, теорема Гурвица[5] утверждает, что любое действительное число может быть приближено дробью так, что
Хотя практически все действительные числа имеют бесконечно много приближений , которые находятся на значительно меньшем расстоянии от , чем эта верхняя граница, приближения для (то есть чи́сла 5/3, 8/5, 13/8, 21/13 и т. д.) в пределе достигают этой границы[6], удерживая расстояние на почти точно от , тем самым никогда не создавая столь хорошие приближения как, к примеру, 355/113 для π. Можно показать, что этим свойством обладает любое действительное число вида , где и являются целыми числами, причём ; а также, что все остальные действительные числа могут быть приближены намного лучше.
Свойства и примеры
Любое рациональное число может быть представлено в виде конечной цепной дроби двумя способами, например:
Теорема Лагранжа: Число представляется в виде бесконечной периодической цепной дроби тогда и только тогда, когда оно является иррациональным решением квадратного уравнения с целыми коэффициентами.
Теорема Маршалла Холла. Если в разложении числа в непрерывную дробь, начиная со второго элемента не встречаются числа большие , то говорят, что число относится к классу . Любое вещественное число может быть представлено в виде суммы двух чисел из класса и в виде произведения двух чисел из класса [7] В дальнейшем было показано, что любое вещественное число может быть представлено в виде суммы трёх чисел из класса и в виде суммы четырёх чисел из класса . Количество требуемых слагаемых в этой теореме не может быть уменьшено — для представления некоторых чисел указанным образом меньшего количества слагаемых недостаточно[8][9].
При разработке солнечного календаря необходимо найти рациональное приближение для числа дней в году, которое равно 365,2421988… Подсчитаем подходящие дроби для дробной части этого числа:
Первая дробь означает, что раз в 4 года надо добавлять лишний день; этот принцип лёг в основу юлианского календаря. При этом ошибка в 1 день накапливается за 128 лет. Второе значение (7/29) никогда не использовалось, поскольку оно мало отличается от следующего, гораздо более точного. Третья дробь (8/33), то есть 8 високосных лет за период в 33 года, была предложена Омаром Хайямом в XI веке и положила начало персидскому календарю, в котором ошибка в день накапливается за 4500 лет (в григорианском — за 3280 лет). Очень точный вариант с четвёртой дробью (31/128, ошибка в сутки накапливается только за 100000 лет[16]) пропагандировал немецкий астроном Иоганн фон Медлер (1864 год), однако большого интереса он не вызвал.
Теория музыки
В теории музыки при построении равномерно темперированного строя требуют, чтобы интервал октавы делился на равных частей, и при этом интервал из таких частей был по возможности близок к интервалу квинты. Эти требования приводят к задаче отыскания рационального приближения для . Третья подходящая дробь даёт равномерно темперированную пентатонику. Четвёртая подходящая дробь приводит к классическому делению октавы на 12 равных полутонов[17].
Решение сравнений первой степени
Рассмотрим сравнение: , где известны, причём можно считать, что взаимно просто с . Надо найти .
Разложим в непрерывную дробь. Она будет конечной, и последняя подходящая дробь . Подставим в формулу (1):
Отсюда вытекает:
или
Вывод: класс вычетов является решением исходного сравнения.
Другие приложения
Доказательство иррациональности чисел. Например, с помощью цепных дробей была доказана иррациональность значения дзета-функции Римана (константа Апери)
Ряд источников дают обобщённое определение непрерывной дроби, допуская для числителей в её звеньях не только 1, но и другие целые (в некоторых источниках допускаются даже комплексные) числа[1]:
Это обобщение повышает гибкость теории, но имеет два недостатка: разложение вещественного числа в непрерывную дробь становится неоднозначным и, кроме того, существование предела подходящих дробей уже не гарантировано — предел может быть бесконечен или вообще отсутствовать.
Для обобщённых непрерывных дробей формулы Эйлера имеют вид[19]:
При этом
Частный случай, в котором все , называется непрерывной дробью Хирцебруха[20].
Выше было сказано, что разложение числа в классическую непрерывную дробь не содержит видимой закономерности. Для обобщённой же непрерывной дроби имеет место формула Браункера[21]:
Другое направление обобщения состоит в построении и применении аппарата непрерывных дробей не для чисел, а для многочленов — используется тот факт, что делимость многочленов по своим свойствам близка к делимости целых чисел[22]. Всякий многочлен или дробно-рациональная функция может быть разложена в непрерывную дробь[23]:
Пример: получим разложение для функции :
Можно установить соответствие между непрерывными дробями и углами на решётках на плоскости. В связи с этим существуют различные варианты «многомерных непрерывных дробей»[24].
Историческая справка
Античные математики умели представлять отношения несоизмеримых величин в виде цепочки последовательных подходящих отношений, получая эту цепочку с помощью алгоритма Евклида. По-видимому, именно таким путём Архимед получил приближение — это 12-я подходящая дробь для или одна треть от 4-й подходящей дроби для .
В V веке индийский математик Ариабхата применял аналогичный «метод измельчения» для решения неопределённых уравнений первой и второй степени. С помощью этой же техники было, вероятно, получено известное приближение для числа (355/113). В XVI векеРафаэль Бомбелли извлекал с помощью цепных дробей квадратные корни (см. его алгоритм).
Начало современной теории цепных дробей положил в 1613 годуПьетро Антонио Катальди. Он отметил основное их свойство (положение между подходящими дробями) и ввёл обозначение, напоминающее современное. Позднее его теорию расширил Джон Валлис, который и предложил термин «непрерывная дробь». Эквивалентный термин «цепная дробь» появился в конце XVIII века.
Применялись эти дроби в первую очередь для рационального приближения вещественных чисел; например, Христиан Гюйгенс использовал их для проектирования зубчатых колёс своего планетария. Гюйгенс уже знал, что подходящие дроби всегда несократимы и что они представляют наилучшее рациональное приближение для исходного числа.
↑последовательность A003417 в OEIS: разложение e в непрерывную дробь.
↑последовательность A093178 в OEIS: разложение в непрерывную дробь.
↑последовательность A001203 в OEIS: разложение в непрерывную дробь.
↑последовательность A002945 в OEIS: разложение в непрерывную дробь.
↑На самом деле из-за постепенного замедления вращения Земли, и, соответственно, постепенного уменьшения числа суток в году, подобный календарь накопил бы фактическую ошибку в одни сутки уже через 4000 лет.
↑Е. Ю. Смирнов.Фризы и цепные дроби (неопр.). МЦНМО (17 марта 2020). Дата обращения: 17 апреля 2020. Архивировано 21 апреля 2021 года.
↑John Wallis, Arithmetica Infinitorum (Oxford, England: Leon Lichfield, 1656), page 182. Архивная копия от 24 апреля 2021 на Wayback Machine. Brouncker expressed, as a continued fraction, the ratio of the area of a circle to the area of the circumscribed square (i.e., 4/π). The continued fraction appears at the top of page 182 (roughly) as: ☐ = 1 1/2 9/2 25/2 49/2 81/2 &c, where the square denotes the ratio that is sought. (Note: On the preceding page, Wallis names Brouncker as: "Dom. Guliel. Vicecon, & Barone Brouncher" (Lord William Viscount and Baron Brouncker).)
↑Хованский А. Н. Приложения цепных дробей и их обобщений к вопросам приближённого анализа (главы 1 и 2). — М.: Гостехиздат, 1956.
Вычисления в алгебре и теории чисел / Пер. с англ. Э. Г. Белаги, под ред. Б. Б. Венкова и Д. К. Фаддеева. — М.: Мир, 1976. — (Математика. Новое в зарубежной науке).