Невырожденная матрица (иначе неособенная матрица) ― квадратная матрица, определитель которой отличен от нуля. В противном случае матрица называется вырожденной.
Для квадратной матрицы с элементами из некоторого поля невырожденность эквивалентна каждому из следующих условий:
Совокупность всех невырожденных матриц порядка образует группу, которая называется полная линейная группа. Роль групповой операции в ней играет обычное умножение матриц. Полная линейная группа обычно обозначается как [4]. Если требуется явно указать, какому полю должны принадлежать элементы матрицы, то пишут [5]. Так, если элементами являются действительные числа, полная линейная группа порядка обозначается , а если комплексные числа, то .
Матрица порядка заведомо невырождена, если это[6]:
диагональная матрица с ненулевыми диагональными элементами (такие матрицы образуют группу );
верхняя треугольная матрица с ненулевыми диагональными элементами (такие матрицы образуют группу );
нижняя треугольная матрица с ненулевыми диагональными элементами;
унитреугольная матрица (т.е. верхние треугольные матрицы у которых диагональные элементы равны 1; такие матрицы образуют группу ).