Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной.
Однако не всякая минимальная поверхность минимизирует площадь среди поверхностей с заданным контуром.
Асимптотические линии на минимальной поверхности образуют изотермическую сеть.
Вообще говоря, минимальная поверхность с краем может не иметь минимальной площади среди всех поверхностей с данным контуром. Но любая точка минимальной поверхности содержится в диске, минимизирующем площадь при данном контуре.
Более того, если компактная минимальная поверхность является графиком гладкой функции, определённой на выпуклой области в -плоскости, то она минимизирует площадь среди всех поверхностей с данной границей.[1]
Первые исследования минимальных поверхностей восходят к Лагранжу (1768), который рассмотрел следующую вариационную задачу: найти поверхность наименьшей площади, натянутую на данный контур. Предполагая искомую поверхность, задаваемую в виде , Лагранж определил, что эта функция должна удовлетворять уравнению Эйлера — Лагранжа.
Позже Монж (1776) обнаружил, что условие минимальности площади поверхности влечёт, что её средняя кривизна равна нулю.
Поэтому за поверхностями с закрепилось название «минимальные».
В действительности, однако, нужно различать понятия минимальной поверхности и поверхности наименьшей площади, так как условие представляет собой лишь необходимое условие минимальности площади, вытекающее из равенства нулю 1-й вариации площади поверхности среди всех поверхностей с заданной границей.
Примечания
↑Harvey, Reese; Lawson, H. Blaine, Jr. Calibrated geometries. Acta Math. 148 (1982), 47–157.