Раскрытие неопределённостей

Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:

(Здесь  — бесконечно малая величина,  — бесконечно большая величина, 1 — бесконечно близкое к числу 1 выражение)

по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.

Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.

Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки. Для раскрытия неопределённостей видов , , пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.

Для раскрытия неопределённостей типа используется следующий алгоритм:

  1. Выявление старшей степени переменной;
  2. Деление на эту переменную как числителя, так и знаменателя.

Для раскрытия неопределённостей типа существует следующий алгоритм:

  1. Разложение на множители числителя и знаменателя;
  2. Сокращение дроби.

Для раскрытия неопределённостей типа иногда удобно применить следующее преобразование:

Пусть и ;
.

Данный вид неопределённостей может раскрываться с использованием асимптотических разложений уменьшаемого и вычитаемого, при этом бесконечно большие члены одного порядка должны уничтожаться.

При раскрытии неопределённостей также применяются замечательные пределы и их следствия.

Пример

 — пример[1] неопределённости вида . По правилу Лопиталя . Второй способ — прибавить и отнять в числителе и дважды применить теорему Лагранжа, к функциям и соответственно:

здесь c, d лежат между a и x, поэтому они стремятся к a при x стремящемся к a, отсюда получаем тот же предел, что и в первом способе.

Примечания

  1. Демидович Б.П. Задача №1358 // Сборник задач и упражнений по математическому анализу. — 7-е изд. — М.: Наука, 1969. — С. 136.

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!