Граф Хоффмана — Синглтона — 7-однородныйнеориентированный граф с 50 вершинами и 175 рёбрами. Граф является единственным сильно регулярным графом с параметрами [5]. Граф был построен Аланом Хоффманом и Робертом Синглтоном, когда они пытались классифицировать все графы Мура, и он является графом Мура с наибольшим порядком, для которого известно, что такой граф существует[6]. Поскольку граф является графом Мура, в котором каждая вершина имеет степень 7, а обхват графа равен 5, граф является клеткой.
Существует много путей построения графов Хоффмана — Синглтона.
Построение на основе пятиугольников и пентаграмм
Возьмём 5 пятиугольников и 5 пентаграмм так, что вершина пятиугольника смежна вершинам и пятиугольника и вершина пентаграммы смежна вершинам и пентаграммы . Свяжем вершину графа с вершиной графа . (Все индексы берутся по модулю 5.)
Построение из троек и плоскостей Фано
Возьмём плоскость Фано и рассмотрим переставки её 7 точек, чтобы получить 30 плоскостей Фано. Выберем одну из этих плоскостей. Имеется 14 других плоскостей Фано, имеющих в точности одну общую тройку («прямую») с выбранной плоскостью. Возьмём эти 15 плоскостей Фано и отбросим оставшиеся 15. Рассмотрим 7C3 = 35 троек из 7 чисел. Теперь соединим (ребром) тройку с плоскостями Фано, содержащими эту тройку, а также соединим непересекающиеся тройки друг с другом. Получившийся граф является графом Хоффмана — Синглтона, он состоит из 50 вершин, соответствующих 35 тройкам и 15 плоскостям Фано, и каждая вершина имеет степень 7. Вершины, соответствующие плоскостям Фано, соединены с 7 тройками по определению, поскольку плоскость Фано имеет 7 прямых. Каждая тройка связана с 3 различными плоскостями Фано, включающими её, и с 4 другими тройками, с которыми она не пересекается.
Используя только факт, что граф Хоффмана — Синглтона является строго регулярным с параметрами , можно показать, что в нём существует 1260 циклов длины 5.
Кроме того, граф Хоффмана — Синглтона содержит 525 копий графа Петерсена. Удаление одного из них даёт копию единственной -клетки[7].
M.D.E. Conder, K. Stokes. Minimum genus embeddings of the Hoffman-Singleton graph // preprint. — 2014.
C. T. Benson, N. E. Losey. On a graph of Hoffman and Singleton // Journal of Combinatorial Theory. Series B. — Т. 11, вып. 1. — С. 67–79. — ISSN0095-8956. — doi:10.1016/0095-8956(71)90015-3.
Alan J. Hoffman, Robert R. Singleton. Moore graphs with diameter 2 and 3 // IBM Journal of Research and Development. — 1960. — Т. 5, вып. 4. — С. 497–504. — doi:10.1147/rd.45.0497.