У этого термина существуют и другие значения, см. Прогрессия.
Геометри́ческая прогре́ссия — последовательность чисел , , , (члены прогрессии), в которой первый член отличен от нуля, а каждый из последующих членов, начиная со второго, получается из предыдущего умножением на ненулевую константу (знаменатель прогрессии). Выражаясь математически: [1].
Любой член геометрической прогрессии может быть вычислен по формуле
Если каждый член геометрической прогрессии больше предыдущего, то прогрессия называется возрастающей; если меньше предыдущего, то убывающей.[2]
Геометрическая прогрессия возрастает, если выполняется один из наборов условий:
и
или
и .
Геометрическая прогрессия убывает, если выполняется один из наборов условий:
и
или
и .
Доказательство
Запишем разность между -м и -м членами геометрической прогрессии по формуле общего члена:
Для возрастающей прогрессии эта разность должна быть положительной независимо от номера , а для убывающей — отрицательной. Условия, выписанные в доказываемом утверждении, как раз и гарантируют, что разность членов и будут иметь определённый знак.■
Геометрическая прогрессия называется бесконечно убывающей[2], если знаменатель прогрессии по абсолютной величине меньше единицы.
При — знакочередующейся[3], при — стационарной (постоянной).
Своё название прогрессия получила по своему характеристическому свойству:
Однако это не только свойство, но и признак геометрической прогрессии, формулировка которого звучит следующим образом:
Последовательность положительных чисел тогда и только тогда является геометрической прогрессией, когда каждый её член, начиная со второго, есть среднее геометрическое предшествующего и последующего членов.
Данный признак можно расширить на другие случаи. Если её члены отрицательны, получим , где .
Если знаки членов прогрессии чередуются, получим , где либо и .
Графическая интерпретация
Если на координатной плоскости нанести точки с координатами , где — номер (натуральное число), а — -й член некоторой геометрической прогрессии, у которой , то все точки будут принадлежать графику функции:
где — это знаменатель геометрической прогрессии, а — её первый член[2].
Это означает, что справедлива теорема:
Для того чтобы последовательность являлась геометрической прогрессией при , необходимо и достаточно, чтобы являлась показательной функцией (от ), заданной на множестве натуральных чисел. [2]
Примеры
Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[5]:8—9.
Формула общего члена арифметической прогрессии:
.
В нашем случае , .
, если .
Доказательство
Пусть — соответственно -й, -й, -й члены геометрической прогрессии, где . Тогда для всякой такой тройки выполняется комплементарное свойство геометрической прогрессии, называемое тождеством геометрической прогрессии:
Произведение первых членов геометрической прогрессии можно рассчитать по формуле
Доказательство
Раскроем произведение :
Выражение представляет собой арифметическую прогрессию с и шагом 1. Сумма первых n членов прогрессии равна
Откуда
Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
Суммой бесконечно убывающей геометрической прогрессии называется число, к которому сумма первых членов бесконечно убывающей геометрической прогрессии стремится и неограниченно приближается с ростом . Сумма всех членов убывающей прогрессии:
, то при , и
при .
Доказательство
Если то при Поэтому Следовательно
Свойства суммы геометрической прогрессии
где — сумма обратных величин, то есть .
Свойства произведения геометрической прогрессии
Произведением первых членов геометрической прогрессии называется произведение от до , то есть выражение вида
Обозначение: .
↑ 1234Е. В. Якушева, А. В. Попов, О. Ю. Черкасов, А. Г. Якушев. Геометрическая прогрессия и её свойства // Экзаменационные вопросы и ответы. Алгебра и начала анализа. 9 и 11 выпускные классы: учебное пособие : книга. — М. : АСТ-ПРЕСС ШКОЛА, 2004. — С. 48. — 416 с. — 8000 экз. — ББК22.12я72. — УДК51(G). — ISBN 5-94776-013-4.