Ве́йвлет (англ.wavelet — небольшая волна, рябь; также всплеск, реже — вэйвлет) — математическаяфункция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают чёткую привязку спектра различных особенностей сигналов ко времени.
В начале развития области употреблялся термин «во́лночка» — калька с английского[источник не указан 2014 дней]. Позднее применялся предложенный К. И. Осколковым термин «вcплеск»[1]. Английское слово «wavelet» означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»).
Разработка вейвлетов связана с несколькими отдельными путями рассуждений, начавшимися с работ Альфреда Хаара в начале XX века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман[англ.] и Морле[англ.], сформулировавшие то, что сейчас известно как непрерывное вейвлет-преобразование (НВП) (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла[англ.], предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование, и многие другие.
В конце XX века появляются инструментальные средства по вейвлетам в системах компьютерной математики Mathcad, MATLAB и Mathematica (см. их описание в книге Дьяконова В. П.). Вейвлеты стали широко применяться в технике обработки сигналов и изображений, в частности, для их компрессии и очистки от шума. Были созданы интегральные микросхемы для вейвлет-обработки сигналов и изображений.
В декабре 2000 года появился новый международный стандарт сжатия изображений JPEG 2000, в котором сжатие осуществляется при помощи разложения изображения по базису вейвлетов.
В 2002—2003 годах появился ICER — формат сжатия изображений на основе вейвлет-преобразований, используемый для фотоснимков, получаемых в дальнем космосе, в частности, в проектах Mars Exploration Rover[2].
Определения, свойства, виды
Существует несколько подходов к определению вейвлета: через масштабный фильтр, масштабную функцию, вейвлет-функцию. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными.
Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости.