Funcția zeta Selberg

Funcția zeta Selberg a fost introdusă de Atle Selberg în 1956. Este analoagă cu celebra funcție zeta Riemann

unde este mulțimea numerelor prime. Funcția zeta Selberg folosește lungimile geodezicelor închise simple în loc de numerele prime. Dacă este un subgrup al SL(2,R), funcția zeta Selberg asociată este definită astfel:

sau

unde p se referă la clasele de conjugare⁠(d) ale geodezicelor prime (în mod echivalent, clasele de conjugare ale elementelor hiperbolice primitive ale ), iar N(p) denotă lungimea p (în mod echivalent, pătratul valorii proprii mai mari a lui p).

Pentru orice suprafață hiperbolică de arie finita exista o funcție zeta Selberg asociată; această funcție este o funcție meromorfă definită în planul complex. Funcția zeta este definită în termeni de geodezice închise ale suprafeței.

Zerourile și polii funcției zeta Selberg, Z(s), pot fi descrise în termeni de date spectrale ale suprafeței.

Zerourile sunt în următoarele puncte:

  1. Pentru fiecare formă cu punct de întoarcere cu valoare proprie există un zero în punctul . Ordinul zeroului este egal cu dimensiunea spațiului propriu corespunzător. (O formă cu punct de întoarcere este o funcție proprie pentru operatorul Laplace–Beltrami⁠(d) care are dezvoltarea Fourier cu termenul constant zero.)
  2. Funcția zeta are, de asemenea, un zero la fiecare pol al determinantului matricei S⁠(d), . Ordinul zeroului este egal cu ordinul polului corespunzător al matricei S.

Funcția zeta are, de asemenea, poli în și poate avea zerouri sau poli în punctele .

Funcția zeta Ihara este considerată un analog p-adic (și un analog în teoria grafurilor) al funcției zeta Selberg.

Funcția zeta Selberg pentru grupul modular

În cazul în care suprafața este , unde este un grupul modular⁠(d), funcția zeta Selberg prezintă un interes deosebit. În acest caz particular funcția zeta Selberg este strâns legată de funcția zeta Riemann.

În acest caz determinantul matricei S este:

Dacă funcția zeta Riemann are un zero în , atunci determinantul matricei S are un pol în , prin urmare funcția zeta Selberg are un zero în .

Bibliografie

  • en Fischer, Jürgen (), An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Mathematics, 1253, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0077696, ISBN 978-3-540-15208-8, MR 0892317 
  • en Hejhal, Dennis A. (), The Selberg trace formula for PSL(2,R). Vol. I, Lecture Notes in Mathematics, Vol. 548, 548, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0079608, MR 0439755 
  • en Hejhal, Dennis A. (), The Selberg trace formula for PSL(2,R). Vol. 2, Lecture Notes in Mathematics, 1001, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0061302, ISBN 978-3-540-12323-1, MR 0711197 
  • en Henryk Iwaniec, Spectral methods of automorphic forms, American Mathematical Society, second edition, 2002.
  • en Selberg, Atle (), „Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc., New Series, 20: 47–87, MR 0088511 
  • en Venkov, A. B. Spectral theory of automorphic functions. Proc. Steklov. Inst. Math, 1982
  • en Toshikazu Sunada, L-functions in geometry and some applications, Proc. Taniguchi Symp. 1985, "Curvature and Topology of Riemannian Manifolds", Springer Lect. Note in Math. 1201(1986), 266-284.

Read other articles:

Європейський комітет зі стандартизаціїангл. European Committee for Standardizationфр. Comité Européen de Normalisationнім. Europäisches Komitee für Normung Абревіатура CEN(фр.)Тип European Standardization Organizationd[1]неприбуткова організація[2]regional standards organisationdЗасновано 1961[2][3]Галузь технічні стандарти Швейцаріїd...

 

العلاقات البريطانية الكورية الشمالية المملكة المتحدة كوريا الشمالية   المملكة المتحدة   كوريا الشمالية تعديل مصدري - تعديل   العلاقات البريطانية الكورية الشمالية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وكوريا الشمالية.[1][2][3][4][5&...

 

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Mahmud II – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Biografi ini memerlukan lebih banyak catatan kaki u...

Beate Hartinger-Klein (2017) Beate Hartinger-Klein (* 9. September 1959 in Graz als Beate Schnuderl[1]) ist eine österreichische Managerin und Politikerin (FPÖ). Sie war von 1999 bis 2002 Abgeordnete zum Nationalrat. Von Jänner 2018 bis zum 22. Mai 2019 war sie Bundesministerin für Arbeit, Soziales, Gesundheit und Konsumentenschutz der Republik Österreich. Inhaltsverzeichnis 1 Ausbildung und Beruf 2 Politischer Werdegang 3 Politische Positionen 3.1 Mindestsicherung 3.2 Rauchverbo...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (July 2020) (Learn how and when to remove this template message) This article needs additional citations for ver...

 

Hall J. KelleyBorn(1790-02-24)February 24, 1790Northwood, New HampshireDiedJanuary 17, 1874(1874-01-17) (aged 83)MassachusettsOccupationwriter Hall Jackson Kelley (February 24, 1790 – January 20, 1874) was an American settler and writer from New England known for his strong advocacy for settlement by the United States of the Oregon Country in the 1820s and 1830s. A native of New Hampshire, he was a school teacher in Maine and Massachusetts, and a longtime resident of the latter state a...

Antisemitic conspiracy theory Part of a series onAntisemitism Part of Jewish history and discrimination History Timeline Reference Definitions Jerusalem Declaration on Antisemitism Nexus Document Three Ds Working definition of antisemitism Manifestations Academic Alt-right American History 21st century Arab Argentine Austrian Belarusian Belgian British Conservative Party Labour Party Canadian Chinese Chilean Costa Rican Christian Christian Identity Creativity Economic European French 21st-cen...

 

Aspect of history of the Kurds This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: History of the Kurds – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message)   Part of a series on: Kurdish history and Kurdish culture People List of Kurds Population Hom...

 

Largest rough diamond ever discovered Star of Africa redirects here. For other uses, see Star of Africa (disambiguation). Cullinan DiamondThe rough diamondWeight3,106 carats (621.2 g)ColourNear colourless[1]Cut105 stones of assorted cutsCountry of originSouth AfricaMine of originPremier MineCut byJoseph Asscher & Co.Original ownerPremier Diamond Mining CompanyOwnerCharles III in right of The Crown The Cullinan Diamond is the largest gem-quality rough diamond ever found,&...

  此條目介紹的是第二代艾伦·M·桑拿级驱逐舰拉菲号。关于第一代班森级驱逐舰拉菲号,请见「拉菲號驅逐艦 (DD-459)」。 拉菲 USS Laffey (DD-724)拉菲号驱逐舰,1959年概觀艦種驱逐舰擁有國 美國艦級艾伦·M·桑拿级驱逐舰代號DD-724製造廠巴斯钢铁厂動工1943年6月28日下水1943年11月21日服役1944年2月8日1951年1月26日(重新服役)退役1947年6月30日(首次退役)1975年3月9日(...

 

2014 American filmMeet Me ThereTheatrical release poster[1]Directed byLex LybrandWritten byBrandon StroudDestiny TalleyProduced byDylan Herin-Soule Lex LybrandChristoph J. MillettBrandon Stroud Destiny TalleyProductioncompanyGreenless StudiosRelease date April 4, 2014 (2014-04-04) Running time93 minutesCountryUnited StatesLanguageEnglish Meet Me There is a 2014 American horror film directed by Lex Lybrand. The movie, written by Brandon Stroud and Destiny Talley, is base...

 

一般道道 北海道道914号新富神里線 路線延長 27.8 km 制定年 1976年(昭和51年) 起点 北海道虻田郡豊浦町新富 終点 北海道虻田郡真狩村神里 接続する主な道路(記法) 北海道道32号豊浦ニセコ線北海道道97号豊浦京極線 ■テンプレート(■ノート ■使い方) ■PJ道路 北海道道914号新富神里線(ほっかいどうどう914ごう しんとみかみさとせん)は、北海道虻田郡豊浦町と虻...

City and capital of South Sumatra, Indonesia Not to be confused with Palimbang. For other uses, see Palembang (disambiguation). City in Sumatra, IndonesiaPalembangCityCity of PalembangKota PalembangAmpera BridgeSultan Mahmud Badaruddin II MuseumGateway to the Cheng Ho MosqueSriwijaya Kingdom Archaeological ParkLRT PalembangGreat Mosque of Palembang FlagCoat of armsNickname(s): Kota Pempek (City of Pempek), Venetië Van Andalas, Bumi Sriwijaya (The Land of Srivijaya)Motto(s): Palemba...

 

  提示:此条目的主题不是wiki。   关于由热衷事物的爱好者所形成的次文化,请见「粉絲文化」。 此條目翻譯品質不佳。翻譯者可能不熟悉中文或原文語言,也可能使用了機器翻譯。請協助翻譯本條目或重新編寫,并注意避免翻译腔的问题。明顯拙劣的翻譯請改掛{{d|G13}}提交刪除。 Fandom, Inc.公司类型私人网站类型wiki農場语言多語制成立2004年10月18日, ...

 

Dornier Do 228LGW Do 228-200TipePesawat penumpang regionalTerbang perdana21 Maret 1981Diperkenalkan1982Tahun produksi1981-19982009–Jumlah produksi270Acuan dasarDornier Do 28 Do 228 milik Angkatan Laut Jerman dalam corak lama. Dek penerbangan Kabin penumpang Penjaga Perbatasan Finlandia Do 228 di Bandar Udara Helsinki-Malmi. Pesawat eksperimen Do 28 TNT pada tahun 1980 Dornier 228 adalah pesawat turboprop bermesin ganda STOL serbaguna, yang dibangun oleh Dornier GmbH (kemudian bernama DASA D...

此条目讲述了天津市正在施工或详细规划阶段的工程。其包含设计阶段的信息,可能与竣工后情況有所出入。无可靠来源供查证的猜测会被移除。 罗斯洛克国际金融中心Rose Rock IFC概要類型摩天大樓、計劃建築物或結構[*]用途办公、酒店、观光、综合用途地點 中国天津市動土日2011年12月16日—兴建期5年造价150亿高度屋顶600米技术细节建筑面积90万平方米层数100设计与建造...

 

Джамбия из Йемена Продавец кинжалов джамбия на улице Таиза (Йемен)Джамби́я (араб. جنۢبية‎) — восточный кинжал с широким загнутым клинком без гарды. Элемент национального мужского костюма йеменцев. В Йемене джамбию носят большинство лиц мужского пола.[1] Кинжал-д...

 

Gaya London Gaya London (disebut juga gaya dispersi London atau hanya gaya dispersi) merupakan gaya tarik menarik antara atom dan molekul.[1] Gaya London merupakan bagian dari gaya antar molekul yang terjadi antara molekul nonpolar dengan molekul nonpolar. Gaya ini merupakan bagian dari Gaya van der Waals. Gaya dispersi London dinamai dari seorang fisikawan Jerman-Amerika Fritz London. Pendahuluan Energi interaksi dimer argon. Bagian dengan rentang panjang disebabkan oleh gaya dispers...

Indian television series Dil Boley OberoiGenreRomance DramaWritten by Harneet Singh Mrinal Jha Abhijit Sinha Franky Jr. Divy Nidhi Sharma (Dialogue) Aparajita Sharma (Dialogue) Directed byAtif KhanStarring Shrenu Parikh Kunal Jaisingh Opening themeO Saathiya by Pamela Jain[1]Ending themeO Saathiya by Bhaven DhanakComposerSanjeev Srivastava & Raju SinghCountry of originIndiaOriginal languageHindiNo. of seasons1No. of episodes111ProductionProducers Gul Khan Karishma Jain Nishikant N...

 

Questa voce sull'argomento cestisti israeliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Yogev Ohayon Ohayon al Maccabi Tel Aviv Nazionalità  Israele Altezza 189 cm Peso 86 kg Pallacanestro Ruolo Playmaker Squadra  Ironi Nahariya Carriera Squadre di club 2004-2008 Hap. Galil Elyon95 (818)2008-2009 Ironi Nahariya22 (237)2009-2011 H. Gerusalemme45 (378)2011-2017 Maccab...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!