Em matemática, a raiz quadrada de é um número positivo que, multiplicado por si próprio, iguala-se a .[1] Todo número real não negativo possui uma única raiz quadrada não negativa, chamada de raiz quadrada principal, a qual é denotada pelo símbolo . Por exemplo, 3 é a raiz quadrada de 9, ou seja, , pois .
Embora , este valor não deve ser considerado como raiz porque o seu símbolo não significa "raiz quadrada", mas sim a raiz quadrada não negativa. Esta é a razão de ser obrigatório o sinal de na frente do símbolo da Fórmula de Bháskara, utilizada na resolução de equações quadráticas (equações do 2º grau).
A extensão da função raiz quadrada a números negativos leva à criação dos números imaginários e ao corpo dos números complexos. O primeiro uso do atual símbolo da raiz quadrada remonta ao século XVI. Pensa-se que a sua origem está na letra r minúscula, primeira letra de radix (do latim, raiz). Pode também ser uma operação geométrica - a partir de um segmento de reta dado determinar um outro cujo comprimento seja igual à raiz quadrada do inicial.[2]
Propriedades
As seguintes propriedades da função raiz quadrada são válidas para todos os números reais positivos x e y:
Geometricamente, a função raiz quadrada transforma a área de um quadrado no comprimento do seu lado.
Admita-se que x e a são reais, e que , e que se quer determinar x. Um erro frequente é aplicar a função raiz quadrada e concluir que . Tal não é verdade uma vez que a raiz quadrada de x2 não é x, mas sim o seu valor absoluto |x| (uma das propriedades acima mencionadas). Portanto, apenas se pode concluir que ou, de outra forma, que
Quando se pretende provar que a função raiz quadrada é contínua ou diferenciável, ou no cálculo de certos limites, a seguinte propriedade é de grande utilidade:
O mesmo é válido para quaisquer x e y não negativos, sendo pelo menos um deles diferente de zero.
A função tem o seguinte gráfico:
A função, cujo domínio é o conjunto dos números reais não negativos é contínua, monótona e diferenciável para todo o x positivo. (não é diferenciável para x = 0 uma vez que o declive da tangente à curva nesse ponto é +∞. A sua derivada é dada por
As dificuldades de computar raízes quadradas usando-se números romanos e a notação romana para frações levou Vitrúvio a declarar que extrair a raiz quadrada de 200 não pode ser feito por números[3].
Seguindo estes passos irás conseguir sem um professor:
1 - Procure um número aproximado ou que chegue no valor da raiz (neste caso 1 é aproximado de 2);
2 - Depois de procurar o valor aproximado,multiplique o mesmo número;
3 - Depois de multiplicar o número por si, segure no resultado e subtraia pelo valor da raiz;
4 - Depois de subtrair, no valor que der adicione duas casas decimais (isto é, dois zero).
5 - Depois disto volte a segurar o valor aproximado da raiz e some o mesmo número por ele próprio, o valor que der multiplique-o por um número qualquer para que se aproxime do resto da subtração do radicando e do número aproximado do radicando.
6 - E por último é só seguir a sequência de soma,subtração e multiplicação.
Método babilônico
Um algoritmo frequentemente usado para aproximar é conhecido como "método babilônico" (porque, especula-se, este era o método usado na Matemática Babilônica para calcular a raiz quadrada,[6] e é o mesmo obtido ao aplicar-se o Método de Newton à equação Para se encontrar a raiz quadrada de um número real n, processa-se como a seguir:
Inicie com um número positivo arbitrário r (preferencialmente próximo da raiz);
Repita o segundo passo para obter uma aproximação melhor.
Este algoritmo é quadraticamente convergente, que significa que o número de dígitos corretos de r dobra a cada repetição. Ele, entretanto, não dá a raiz exata, mas dá uma ótima aproximação. Ou seja não é um método perfeito, apresenta uma margem de erro (muito pequena, desprezível para cálculos que não necessitam de muita precisão. De fato, dependendo da aproximação todas as casas decimais estarão corretas). Abaixo, um exemplo do método para melhor compreensão:
Digamos que se queira extrair a raiz quadrada de 66.
Ache o menor quadrado perfeito que mais se aproxima do número dado. Nesse caso o quadrado que mais se aproxima é 64. Nota: Usa-se sempre o quadrado menor que o número procurado, mesmo que o quadrado maior seja mais próximo.
Extraia a raiz quadrada do quadrado que mais se aproximou. A raiz quadrada de 64 é 8. Nesse exemplo chamaremos 8 como A (A = 8).
Divida o número original por A, ou seja, 66 / 8 = 8,2. Nesse exemplo chamaremos 8,2 como B (B = 8,2).
Somamos A com B e dividimos por 2. 8 + 8,2 = 16,2 16,2 / 2 = 8,1 O resultado chamaremos de C (C = 8,1).
Agora dividimos o número original (nesse caso 66) por C. 66 / 8,1 = 8,148 O resultado chamaremos de D (D = 8,148).
Novamente, usando do mesmo procedimento, somaremos C e D e dividimos por 2. 8,1 + 8,148 = 16,248 16,248 / 2 = 8,124 Esse número chamaremos de E (E = 8,124).
Esse seria aproximadamente a raiz quadrada de 66. Poderíamos dividir o 66 por E e continuar esse mesmo processo, só que isso acabaria por dar algumas imprecisões. Então podemos dizer que a raiz quadrada de 66 é aproximadamente 8,124. Ao testarmos numa calculadora teremos: 8,12403840463596...
Ou seja, esse é um bom método para se achar aproximadamente uma raiz quadrada.
Um algoritmo exato semelhante ao da divisão longa
Este método, apesar de muito mais lento que o método Babilônico, tem a vantagem de ser exato: dado um número que tem uma raiz quadrada cuja representação decimal termina, então o algoritmo termina e produz a raiz quadrada correta após um número finito de passos. Ele pode ser usado, portanto, para checar se um dado número é um quadrado perfeito.
Escreva o número em decimal e divida-o em pares de dígitos, começando do ponto. Os números são colocados de uma maneira similar ao algoritmo de divisão longa e a raiz quadrada final aparecerá acima do número original.
Para cada iteração: Traga para baixo o par o mais significativo dos dígitos ainda não usados e adicione-os a todo o restante. Este é o valor atual consultado em etapas 2 e 3. Se r denotar a parte do resultado encontrado assim distante, determine o maior digito x que não faz y = x(20r + x) para exceder o valor atual. Coloque o dígito novo x na linha do quociente. Subtraia y do valor atual para dar forma a um restante novo. Se o restante for zero e não houver mais dígito para trazer para baixo o algoritmo terminou. Se não continue com etapa 1. Exemplo: Que é a raiz quadrada de 152,2756?
Embora demonstrado aqui para números da base 10, o procedimento trabalha para algumas bases, incluindo a base 2. Na descrição acima, 20 meios dobram a base de número usada, no exemplo de binário isto seriam realmente 100. que o algoritmo está no fato muito mais fácil de executar na base 2, como em cada etapa somente os dois dígitos 0 e 1 têm que ser testados.
Equação de Pell
A equação de Pell permite encontrar a parte inteira de uma raiz quadrada simplesmente subtraindo inteiros ímpares. Por exemplo, para calcular a parte inteira da raiz quadrada de 19, calcula-se a sequência:
A Equação de Pell é um método para obter a raiz quadrada simplesmente subtraindo números ímpares.
Ex: Para obter nós começamos com a seguinte sequência:
5 passos foram tomados e isso nos leva que a parte inteira da raiz quadrada de 27 é 5.
Efetua-se: resultado do último passo * 100 e número de passos da sequência anterior * 20 + 1
e
O próximo número é 1.
Em seguida efetua-se: resultado do último passo * 100 e ((número de passos da primeira sequência * 10) + (número de passos da segunda sequência)) * 20 + 1
e
O próximo número é 9.
O resultado nos dá 5.19 com uma aproximação da raiz quadrada de 27.
Método das Frações Continuadas
Irracionais Quadráticos, que são os números envolvendo raízes quadradas na forma (a+√b)/c, são compostos por períodos de frações continuadas. Isto faz com que elas sejam fáceis de serem calculadas recursivamente, dado o período. Por exemplo, para calcular √2, nós temos que usar o fato de que √2-1 = [0;2,2,2,2,2,...], e usar a relação recursiva: an+1=1/(2+an) com a0=0
para obter √2-1 dada uma precisão especificada por n níveis de recursividade, e adicionar 1 ao resultado para obter √2.
Raiz quadrada de números complexos
Para todo número complexoz não-nulo existem exatamente dois números w tais que w² = z. A definição usual de √z é como segue: se z = r exp(iφ) é representado em coordenadas polares com -π < φ ≤ π, então fazemos √z = √r exp(iφ/2). Isto definido, a função raiz quadrada é holomórfica em todo ponto exceto nos números não-positivos reais (onde ela não é nem contínua). A série de Taylor acima para √(1+x) continua válida para números complexos x com |x| < 1.
Quando o número complexo está na forma retangular, a seguinte fórmula pode ser usada:
onde o sinal da parte imaginária da raiz é o mesmo que o sinal da parte imaginária do número original.
Perceba que, por causa da natureza descontínua da função raiz quadrada no plano complexo, a regra é em geral falsa. Se for tomada erroneamente como verdadeira, esta regra pode levar a numerosas "provas" erradas, como por exemplo a seguinte prova real que mostra que -1 = 1:[7]
A terceira igualdade não pode ser justificada.
Porém, a regra pode estar errada apenas até um fator -1, é verdadeiro para ambos ± tanto + como - (mas não ambos ao mesmo tempo). Perceba que portanto e finalmente com o uso de = e
Raízes quadradas de matrizes e operadores
Se A é uma matriz positiva definida (ou um operador positivo definido), então existe exatamente uma matriz positiva definida (idem para operador) B tal que B² = A; definimos
Mais genericamente, para cada matriz ou operador normalA existem operadores normais B tais que B² = A. Em geral, há vários operadores B para cada A e a função raiz quadrada não pode ser definida para operadores normais de uma maneira satisfatória.