Bissetriz

A bissetriz (AO 1945: bissectriz) é o lugar geométrico dos pontos que equidistam de duas retas concorrentes e, por consequência, divide um ângulo em dois ângulos congruentes.[1]

Tipos de bissetriz

Existem dois tipos de bissetriz:

  • A bissetriz interna - que é a bissetriz do próprio ângulo
  • A bissetriz externa - que é a bissetriz do ângulo formado por uma semi-reta que compõe o ângulo e pela semi-reta oposta à outra semi-reta, ou em outras palavras, é a bissetriz do ângulo suplementar a este.

Propriedades de uma bissetriz

Construção com régua e compasso

Construção de uma bissetriz
Traçado da bissetriz de um ângulo usando régua e compasso:
  • Centre o compasso no ponto O e trace uma circunferência qualquer, a interseção com as semirretas determina os pontos A e B.
  • Centre o compasso em A e trace um arco de circunferência maior do que a metade do segmento AB, a fim de evitar imprecisões.
  • Centre o compasso em B e trace o mesmo arco anterior.
  • A interseção dos arcos determina o ponto C.
  • A bissetriz do ângulo O passa pelos pontos C e O.

Para a bissetriz de um ângulo côncavo

A bissetriz de um ângulo côncavo será a semirreta oposta à bissetriz do ângulo replementar deste.

Bissetrizes de um triângulo

Bissetrizes de um triângulo e círculos exinscritos e inscritos

Um triângulo possui dois tipos de bissetrizes: bissetrizes internas e bissetrizes externas.

  • As três bissetrizes internas do triângulo são concorrentes, e o ponto de encontro delas é o incentro, que é o centro da circunferência inscrita no triângulo, e este ponto também é equidistante de todos os lados do triângulo.
  • É sabido também que duas bissetrizes externas de dois vértices diferentes, junto com a bissetriz interna do terceiro vértice do triângulo também são concorrentes e se encontram no exincentro dele, que é tangente a um lado do triângulo e aos prolongamentos dos outros dois lados deste triângulo.


Teorema da bissetriz interna

Neste triângulo, BD:DC = AB:AC.

O teorema da bissetriz interna diz que, dado um triângulo ABC, fazendo-se uma bissetriz interna do ângulo A que determina sobre o segmento BC um ponto D, tem-se que os segmentos BD e CD formados por este ponto são diretamente proporcionais aos lados AB e AC,respectivamente. Em outras palavras, tendo um triângulo ABC, partindo uma bissetriz de A, e sendo D a intersecção entre a bissetriz e o lado BC, tem-se que:


Teorema da bissetriz externa

Neste triângulo BH:CH=AB:AC

O teorema da bissetriz externa diz que, dado um triângulo ABC, fazendo-se uma bissetriz externa do ângulo A que determina sobre a reta do segmento BC um ponto H, tem-se que os segmentos BH e CH formados por este ponto são diretamente proporcionais aos lados AB e AC,respectivamente.

Em outras palavras, tendo um triângulo ABC, partindo uma bissetriz externa de A, e sendo H a intersecção entre a bissetriz e a reta do lado BC, tem-se que:

Referências

  1. Putnoki, José Carlos (1990). Elementos de geometria e desenho geométrico. [S.l.]: Scipione. Vol. 1 

Bibliografia

  • Braga, Theodoro - Desenho linear geométrico. Ed. Cone, São Paulo: 1997.
  • Carvalho, Benjamim - Desenho Geométrico. Ed. Ao Livro Técnico, São Paulo: 1982.
  • Giongo, Affonso Rocha - Curso de Desenho Geométrico. Ed. Nobel, São Paulo: 1954.
  • Mandarino, Denis - Desenho Geométrico, construções com régua e compasso. Ed. Plêiade, São Paulo: 2007.
  • Marmo, Carlos - Desenho Geométrico. Ed. Scipione, São Paulo: 1995.
  • Putnoki, José Carlos - Elementos de geometria e desenho geométrico. Vol. 1 e 2. Ed. Scipione, São Paulo: 1990.

Ver também

Ligações externas

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Flying Dutchman 1995 film – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 1995 Dutch filmDe Vliegende HollanderDirected byJos StellingWritten byHans HeesenJos StellingProduced byJos Stelling...

 

Bahasa Arab Aljazair Barat (juga dikenali sebagai Bahasa Arab Aljazair Barat Daya, Bahasa Arab Oran Arab: الوهرانية) ialah kesinambungan dialek bahasa Arab Hilali, yang terutamanya dituturkan di Oran, Aljazair.[1] Bahasa Arab Aljazair Barat Arab Oran Dituturkan di  Aljazair Penutur22,4 juta (2020)[2]Rumpun bahasaAfroasiatik SemitSemit TengahArabArab MaghribArab Aljazair Barat Sistem penulisanAbjad ArabKode bahasaISO 639-3arqGlottologalge1239[3&#...

 

Kadipaten Agung Luxembourg Keanggotaan Perserikatan Bangsa-BangsaKeanggotaanAnggota penuhSejak1945Kursi DK PBBNon-permanenDuta BesarChristian Braun Kadipaten Agung Luxembourg adalah anggota carter Perserikatan Bangsa-Bangsa dan menjabat sebagai salah satu dari sepuluh anggota non-permanen Dewan Keamanan PBB (2013–2014). Sejarah Lihat pula: Perwakilan Permanen Luxembourg untuk Perserikatan Bangsa-Bangsa Sebuah delegasi dari Luxembourg yang dikepalai oleh Joseph Bech, Menteri Urusan Luar Nege...

سفارة روسيا في البرازيل روسيا البرازيل الإحداثيات 15°48′18″S 47°52′32″W / 15.805°S 47.8755°W / -15.805; -47.8755  البلد البرازيل  المكان برازيليا الموقع الالكتروني الموقع الرسمي  تعديل مصدري - تعديل   سفارة روسيا في البرازيل هي أرفع تمثيل دبلوماسي[1] لدولة روسيا لدى ...

 

У Вікіпедії є статті про інші значення цього терміна: Костел Матері Божої Неустанної Помочі. Костел Матері Божої Неустанної Помочі 49°50′36″ пн. ш. 23°58′46″ сх. д. / 49.8433667° пн. ш. 23.9796528° сх. д. / 49.8433667; 23.9796528Координати: 49°50′36″ пн. ш. 23°58′46...

 

Sporting News Men's College Basketball Player of the YearAwarded forthe most outstanding NCAA Division I men's basketball playerCountryUnited StatesPresented bySporting News magazineHistoryFirst award1943Most recentZach Edey, Purdue The Sporting News Men's College Basketball Player of the Year is an annual basketball award given to the best men's basketball player in NCAA Division I competition. The award was first given following the 1942–43 season and is presented by Sporting News (former...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Vox Humana song – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this template message) 1985 single by Kenny LogginsVox HumanaSingle by Kenny Logginsfrom the album Vox Humana B-sideLove Will FollowReleased1985GenreP...

 

Tokusatsu superhero-drama television series Kamen Rider BlackGenreTokusatsuSuperhero fictionScience fictionAction/AdventureDark FantasyDramaConspiracyCreated byShotaro IshinomoriBased onHave You Seen The Kamen Rider?!by Shotaro IshinomoriWritten byShōzō Uehara (eps 1-12)Noboru Sugimura (eps 13-51)Directed byYoshiaki KobayashiStarringTetsuo KurataTakahito HoriuchiAkemi InoueAyumi TaguchiHitomi YoshiiJun YoshidaVoices ofShōzō IizukaToshimichi TakahashiMasaki TerasomaNarrated byKiyoshi Kobay...

 

Supreme Court of the United States38°53′26″N 77°00′16″W / 38.89056°N 77.00444°W / 38.89056; -77.00444EstablishedMarch 4, 1789; 234 years ago (1789-03-04)LocationWashington, D.C.Coordinates38°53′26″N 77°00′16″W / 38.89056°N 77.00444°W / 38.89056; -77.00444Composition methodPresidential nomination with Senate confirmationAuthorized byConstitution of the United States, Art. III, § 1Judge term lengthli...

Prison complex in Texas, U.S. This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Federal Correctional Complex, Beaumont – news · newspapers · books · scholar · JSTOR (October 2015)United States Penitentiary, BeaumontLocationJefferson County, TexasCoordinates29°57′53″N 94°04′45″W / &#...

 

Fictional family from the animated series Family Guy This article is about a fictional family. For other people called Griffin, see Griffin (surname). For the pub in Adelaide, see The Griffins Hotel. The GriffinsFamily Guy familyThe Griffin family. From left to right: Chris, Peter, Stewie, Lois, Brian and Meg.First appearanceDeath Has a Shadow (1999)Created bySeth MacFarlaneDuration1999–2002, 2005–present The Griffin family is a fictional family and main characters in the animated televis...

 

1937 film by William C. McGann Alcatraz IslandTheatrical release posterDirected byWilliam C. McGannScreenplay byCrane WilburProduced byBryan FoyStarringJohn LitelAnn SheridanMary MaguireGordon OliverDick PurcellBen WeldenCinematographyL. William O'ConnellEdited byFrank DeWarMusic byHeinz RoemheldProductioncompanyCosmopolitan ProductionsDistributed byWarner Bros.Release date November 6, 1937 (1937-11-06) Running time63 minutesCountryUnited StatesLanguageEnglish Alcatraz Island i...

Mixed Magics: Four Tales of Chrestomanci First editionAuthorDiana Wynne JonesIllustratorTim Stevens (first)Cover artistPaul Slater[1]CountryUnited KingdomLanguageEnglishSeriesChrestomanci[2]GenreChildren's fantasy collectionPublisherCollinsPublication dateMay 2000Media typePrint (hardcover)Pages171 pp (first edition)[1]ISBN978-0-00-185742-1LC ClassPZ7.J684 Mi 2001 (US)Preceded byThe Lives of Christopher Chant Followed byConrad's Fate ...

 

Johann Christoph Freiherr von Bartenstein, nach Martin van Meytens Johann Christoph Bartenstein, ab 1719 Ritter von Bartenstein, ab 1732 Freiherr von Bartenstein, (* 23. Oktober 1689 in Straßburg; † 6. August 1767 in Wien) war ein Staatsmann und Diplomat in Diensten der Habsburgermonarchie. Er begründete die Familie der Freiherrn von Bartenstein. Inhaltsverzeichnis 1 Leben 1.1 Herkunft 1.2 Studium und erste Kontakte 1.3 Karriere in Wien 1.4 Familie 1.5 Nachleben 2 Wirken 2.1 Diplomatische...

 

University in Kingston, Ontario, Canada Queen's University at KingstonLatin: Universitas Reginae apud Regiodunum[1]Other nameQueen's UniversityFormer namesQueen's College at Kingston(1841–1912)[2]MottoSapientia et Doctrina Stabilitas (Latin)Motto in EnglishWisdom and knowledge shall be the stability of thy times[3]TypePublic research universityEstablished16 October 1841(182 years ago) (1841-10-16)[2]Academic affiliationACU, CARL, COU, CUSI...

Barcelona Ladies Open 2009 Sport Tennis Data 13 aprile - 19 aprile Edizione 3a Superficie Terra rossa Campioni Singolare Roberta Vinci Doppio Nuria Llagostera Vives / María José Martínez Sánchez 2010 Il Barcelona Ladies Open 2009 è stato un torneo di tennis giocato sulla terra rossa. È stata la 3ª edizione del Barcelona Ladies Open, che fa parte della categoria International nell'ambito del WTA Tour 2009. Si è giocato al David Lloyd Club Turó di Barcellona in Spagna, dal 13 al 19 apr...

 

American actress (1910–1970) Gloria JoyJoy c. 1920BornCorrine Louise Johnson(1910-10-07)October 7, 1910Los Angeles, California, U.S.DiedJanuary 25, 1970(1970-01-25) (aged 59)Los Angeles County, California, U.S.Other namesGloria BackusOccupationActressYears active1918–1934 Gloria Joy (born Corrine Louise Johnson; October 7, 1910 – January 25, 1970)[1] was an American actress whose career began at age seven in 1918 during the silent film era. She mostly performed as...

 

1985 video game 1985 video gameThe Halley Project: A Mission In Our Solar SystemDeveloper(s)Tom SnyderPublisher(s)MindscapeDesigner(s)Omar KhudariTom SnyderProgrammer(s)Apple, C64, AmigaLeonard BertoniPlatform(s)Apple II, Atari 8-bit, Commodore 64, AmigaRelease1985Genre(s)Space flight simulation gameMode(s)Single-player The Halley Project: A Mission In Our Solar System is a space flight simulation game developed for the Apple II,[1] Commodore 64,[1][2][3][4...

Neighborhood in Tucson, Arizona Desert Palms Park (DPP) is a neighborhood in Tucson, Arizona. It is located in the east side of the city, between 8900-9100 east and 1300-1800 north. It is bordered by Speedway Boulevard to the South and Wrightstown Road to the North. The Catalina Mountains can be seen to the north and the Rincon Mountains to the east. Avenida Ricardo Small crosses Desert Palms Park neighborhood from south to north. History A civil engineer named Otto Small, born in Poland in 1...

 

Peñón de Entrerríos Panorama del PeñónLocalización geográficaCordillera Altiplano Norte de Antioquia (Meseta de Santa Rosa de Osos), Cordillera Central (Andes),Coordenadas 6°32′28″N 75°31′21″O / 6.5410944444444, -75.522455555556Localización administrativaPaís ColombiaLocalización Entrerríos (Antioquia, Colombia)Características generalesTipo MonolitoAltitud 2510 mProminencia 72 mMapa de localización Peñón de Entrerríos Ubicación en Colombia Peñón de...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!