Zjawisko nadciekłości wynika ze szczególnych kolektywnych zjawisk kwantowych występujących w cieczach znajdujących się w bardzo niskiej temperaturze. Na przykład dla izotopuhelu4He, obserwowana jest poniżej temperatury 2,17 K (-270,98 °C), zaś dla izotopuhelu3He, temperatura ta wynosi 1 mK – 2,6 mK w zależności od ciśnienia (0 – 30 barów)[2] (przy całkowitym braku pola magnetycznego), czyli niewiele więcej od temperatury absolutnego zera.
Jakkolwiek w obu tych przypadkach zjawisko to daje taki sam efekt makroskopowy, przyczyna nadciekłości jest nieco inna. Atomy helu-4 są bozonami i dlatego ich nadciekłość może być tłumaczona faktem generowania kondensatu Bosego-Einsteina przez ten układ. Natomiast atomy helu-3 są fermionami, a ich własności w stanie nadciekłym mogą być raczej tłumaczone za pomocą mechanizmów matematycznych transformacji Bogolubowa, używanej także w teorii BCS, stworzonej na potrzeby wyjaśnienia zjawiska nadprzewodnictwa. W przybliżeniu mówi ona, że fermiony, takie jak atomy helu-3, łączą się w pary, które są bozonami i dopiero te pary tworzą kondensat Bosego-Einsteina. Próbę wyjaśnienia tego zjawiska podjął również Witalij Ginzburg we współpracy z Pitajewskim. Opublikowali oni początkową teorię parametru Ψ dla nadciekłości. Ginzburg razem z Sobianinem zaproponowali uogólnioną teorię nadciekłości.
Zjawisko nadciekłości helu jest szeroko stosowane do osiągania niskich temperatur w eksperymentach chemicznych i fizycznych (jest chłodziwem dla LHC[3], gdzie wymagana jest duża szybkość odprowadzania ciepła), a także w przemyśle[potrzebny przypis].
Zanik lepkości przy zachowaniu uporządkowanej struktury przestrzennej ciała występuje w ciałach nadstałych.