Овој пребарувач започнал како база на податоци која опфаќа теми како информатиката, геонауката и невронауката.[4] Меѓутоа, во 2017 г. системот во својот корпус почнал да вклучува биомедицинска литература.[4] Во септември 2022 г. опфаќал преку 200 милиони публикации од сите научни полиња.[5]
Технологија
Semantic Scholar дава еднореченично резиме на научна литература. Една од неговите цели е да го реши проблемот со читање на многубројни наслови и долги извадоци на мобилни уреди.[6] Настојува да осигура читателски пристап до трите милиони научни трудови кои се објавуваат годишно, земајќи предвид дека само половина од литературата воопшто се чита.[7]
За разлика од Google Scholar и PubMed, Semantic Scholar е предвиден да ги истакнува најважните и највлијателните елементи на трудот.[10] Вештачката интелигенција ги препознава скриените врски помеѓу истражувачките теми.[11] Како претходно споменатите пребарувачи, Semantic Scholar исто така се користи со графовски структури, вклучувајќи ги Microsoft Academic Knowledge Graph, SciGraph на Springer Nature и Semantic Scholar Corpus.[12]
Секој труд во Semantic Scholar има единствена назнака наречена Semantic Scholar Corpus ID (скрат. S2CID). Еве една ставка за пример:
Liu, Ying; Gayle, Albert A; Wilder-Smith, Annelies; Rocklöv, Joacim (март 2020). „The reproductive number of COVID-19 is higher compared to SARS coronavirus“. Journal of Travel Medicine. 27 (2). doi:10.1093/jtm/taaa021. PMID32052846. S2CID211099356.
Semantic Scholar е бесплатен, и за разлика од сличните пребарувачи (на пр. Google Scholar) не пребарува материјал кој се наплаќа.[13][4]
Во едно споредбено проучување утврдено е дека истражувачките способности на Semantic Scholar преку систематски приод даваат 98,88 % точност на исходот при откривање на податоците.[13] Во истото проучување разгледани се други функции на Semantic Scholar, како алатките за извидување на метаподатоци и неколку цитатни алатки.[13]
Број на корисници и публикации
Во јануари 2018 г., откако претходната година е спроведен проект за ставање на биомедицински трудови и тематски резимеа, корпусот на Semantic Scholar опфаќал преку 40 милиони трудови од област ана информатиката и биомедицината.[14] Во март 2018 г. за предводник на Semantic Scholar е назначен Даг Рејмонд, разработувач на машинското учење за подлогата Amazon Alexa.[15] Во август 2019 г. бројот на метаподатоци во опфатените трудови (не самите PDF-ови) нараснал на 173 милиони[16] по додавањето на записите на Microsoft Academic Graph.[17] Во 2020 г. е склучено партнерство меѓу Semantic Scholar и издаваштвото на Чикашкиот универзитет, со кое сите написи од тоа издаваштво се ставени во корпусот на Semantic Scholar.[18] На крајот од 2020 г. Semantic Scholar имал индексирано 190 милиони трудови.[19]
Во 2020 г. Semantic Scholar достигнал 7 милиони корисници месечно.[6]
↑Matthews, David (1 септември 2021). „Drowning in the literature? These smart software tools can help“. Nature. Посетено на 5 септември 2022. ...the publicly available corpus compiled by Semantic Scholar — a tool set up in 2015 by the Allen Institute for Artificial Intelligence in Seattle, Washington — amounting to around 200 million articles, including preprints.
↑„Semantic Scholar“. International Journal of Language and Literary Studies. Посетено на 9 ноември 2021.
↑Baykoucheva, Svetla (2021). Driving Science Information Discovery in the Digital Age (англиски). Chandos Publishing. стр. 91. ISBN978-0-12-823724-3.
↑Jose, Joemon M.; Yilmaz, Emine; Magalhães, João; Castells, Pablo; Ferro, Nicola; Silva, Mário J.; Martins, Flávio (2020). Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I (англиски). Cham, Switzerland: Springer Nature. стр. 254. ISBN978-3-030-45438-8.