Geometria

-2 Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.
Hexagonum regulare circino regulaque utendo instruens. Figura animata undecim gradibus monstrat quomodo illud hexagonum instruatur secundum methodum in Libro IV, Propositione 15 in libris Elementi a Euclide editis.

Geometria[1] (-ae, f.; Graece γεωμετρία < γεω 'terra' + μετρία 'mensura') est disciplina mathematica quae quantitates spatiales considerat: magnitudines, formas, et coniunctiones inter eas.

Geometria classica seu Euclidea, in quinque axiomatibus instructa, diu modo theoremata de figuris regularibus, sicut circulis, triangulis, pentagonis, aliisque formis, tractabat. Sed deinde, systemate coordinatarum et calculo infinitesimali saeculo septimo decimo excogitatis, geometrae omnes figuras, et regulares et irregulares, explorare potuerunt.

Cum Saeculo undevicensimo scientia universi crevisset, opus erat geometriis novis quae negant quintum axioma Euclideum, quod affirmat lineas non parallellas inter se convenire. Illae geometriae, quae non Euclideae appellantur, sunt utiles ad spatium physicum trans magnas distantias describendum.

Historia

Carta in qua sunt quattuor modo colores: theorema clarum dicit quattuor colores satis esse ad omnem cartam colorandam.
Demonstratio geometrica theorematis Pythagorae, a Liu Hui, mathematico Sinico, excogitata.

Aegyptii antiqui satis bene geometriam cognoverunt, ut pyramides, illa monumenta adhuc admirabilia, aedificaverint. Babylonii quoque antiqui propositionem Pythagorae cognoverunt.

Graeci antiqui studium geometriae, quali simile hodie agitur, coeperunt. Philosophi geometriam magnificam artem aestimaverunt. Euclides erat geometres magnus illae aetatis qui disciplinam axiomatum deductivam in opere suo quod Elementa vocatur clare implet. In illo opere, postulata geometriae Euclideanae monstrata sunt et ex illis 465 rationes derivatae sunt. Fundamentum geometriae condiderunt. Saeculo autem undevicensimo, aliqua menda inventa sunt.

Geometria pars est quadruvii quod universitatibus medievalibus doctum est.

Omar Khayyam geometriam novam decrevit quae suam algebram attigit.

Renatus Cartesius geometriam et algebram iunxit. Puncta in plano a duobus numeris et puncta in spatio a tribus numeris expressit: hi numeri coordinatae dicuntur. Geometriam analyticam hoc modo excogitavit.

Geometria Euclidea

Si plus cognoscere vis, vide etiam Geometria Euclidea.

Sicut aliae disciplinae mathematicae, geometria logica utitur. Euclides propositiones per axiomata principio libri postulata demonstravit. Haec axiomata sunt [2]:

  1. a quovis punctu ad quodvis punctum linea duci potest
  2. rectam lineam terminatam in continuum et directum produci potest
  3. quovis centro et intervallo circulus describi potest
  4. omnes anguli recti inter se aequali sunt
  5. si in duas rectas lineas recta linea incidens, interiores et ad easdem partes angulos duobus rectis minores fecerit, duae illae rectae lineae in infinitum productae, inter se convenient ex ea parte ad quam sunt anguli duobus rectis minores.

Intellegendum est in duobus prioribus axiomatibus, quae quandam lineam exsistere postulant, unam solam lineam huius generis adesse, et item in tertio axiomate unum tantum circulum adesse.

Axiomata Euclidis ad geometriam in duabus tantis dimensionibus describendam apta sunt. In geometria hodierna, etiam spatia multorum dimensionum cum intervallis a mensura Euclidea mensis Euclidea vocantur.

Geometria hodierna

Geometria hodierna in has disciplinas dividitur:

  • Geometria quae de affinitate tantum agit. Haec est quasi geometria Euclidea sed notionibus mensura atque angulis non utitur. Sive ex axiomatibus sive ex algebra lineari construi potest.
  • Geometria quae punctis proiectis describit. Construi potest ex geometria affinitatis cum punctis in infinitate additis. Ex arte perspectiva orta est.
  • Geometria analytica est studium geometriae quod coordinatis utitur. Lineae, plana et curvae per aequationes exprimuntur.
  • Geometria differentialis, vel iunctio geometriae cum calculo differentiali. Hic calculus enim ab initio ad problemata geometrica solvenda, velut ad tangentes inveniendas, adhibitus est. Geometria differentialis apta est ad spatia curvata describenda, sicut in theoria relativitatis generalis.
  • Topologia est studium proprietatum figurarum quae a transformationibus continuis non mutantur.

Alia axiomata

Existentia et Incidentia

  1. Puncta infinita existunt. Conlatio omnium punctorum spatium appellatur.
  2. Conlatio partita ab illis punctis quae planum appellantur existit.
  3. Conlatio partita a punctis cuiusque plani quae linea recta appellantur existit.
  4. Duo puncta lineam rectam determinant.
  5. Tria puncta planum determinant.
  6. Si duo puncta lineae rectae in plano sunt, omnia puncta illius lineae in illo plano sunt.

Nexus interni

Triplex Calabi-Yau quinticus.

Notae

  1. C. T. Lewis & C. Short, A Latin dictionary founded on Andrews' edition of Freund's Latin dictionary (Oxoniae: Clarendon Press, 1879).
  2. Simson, Robertus, Euclidis Elementorum libri priores sex, item undecimus et duodecimus, Glasguae, 1756, [1]

Bibliographia

  • Boyer, C. B. 1989, 1991. A History of Mathematics. Ed. secunda, retractata Uta C. Merzbach. Novi Eboraci: Wiley. ISBN 0471543977.
  • Kappraff, Jay. 2014. A Participatory Approach to Modern Geometry. World Scientific Publishing. ISBN 9789814556705.
  • Lobachevsky, Nikolai I. 2010. Pangeometry. Ed. et conv. A. Papadopoulos. Heritage of European Mathematics Series, 4. European Mathematical Society.
  • Mlodinow, M. 1992. Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace. Allen Lane.

Nexus externi

Figurae geometricae communes
Triangulum Parallelogrammum Rectangulum Quadrum Circulus Pyramis Cubus Sphaera
Quinque Corpora Platonica
Tetrahedron Hexahedron
aut Cubus
Octahedron Dodecahedron Icosahedron
(Animatio) (Animatio) (Animatio) (Animatio) (Animatio)


Read other articles:

Amt Britz-Chorin-Oderberg in Brandenburg - district Barnim locator map Amt Britz-Chorin-Oderberg is an Amt (collective municipality) in the district of Barnim, in Brandenburg, Germany. Its seat is in the town Britz. It was formed on 1 January 2009 by the merger of the former Ämter Britz-Chorin and Oderberg. The Amt Britz-Chorin-Oderberg consists of the following municipalities: Britz Chorin Hohenfinow Liepe Lunow-Stolzenhagen Niederfinow Oderberg Parsteinsee Demography Development of Populat...

 

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. (Tháng 12/2022) Thành phố Đài Bắc, Đài Loan Thành phố Tokyo, Nhật Bản Thành phố Chicago, Hoa Kỳ Thành phố Tampere, Phần Lan Thành phố chủ yếu được dùng để chỉ một khu...

 

Lodewijk XI 1423-1483 Koning van Frankrijk Periode 1461-1483 Voorganger Karel VII Opvolger Karel VIII Vader Karel VII van Frankrijk Moeder Maria van Anjou Dynastie Huis Valois Lodewijk XI (Bourges (Cher), 3 juli 1423 – Kasteel van Plessis-lès-Tours (La Riche, Indre-et-Loire), 30 augustus 1483) uit het huis Valois, was koning van Frankrijk van 1461 tot aan zijn dood. Lodewijk XI werd getypeerd als le plus terrible roi qui fut jamais en France (de ergste koning die Frankrijk ooit gekend had)...

Ali AlatasKetua Dewan Pertimbangan Presiden ke-1Masa jabatan10 April 2007 – 11 Desember 2008PresidenSusilo Bambang YudhoyonoPendahuluAchmad Tirtosudiro(Sebagai Ketua Dewan Pertimbangan Agung)PenggantiT.B. SilalahiMenteri Luar Negeri Indonesia ke-13Masa jabatan21 Maret 1988 – 20 Oktober 1999PresidenSoehartoB. J. HabibiePendahuluMochtar KusumaatmadjaPenggantiAlwi Shihab Informasi pribadiLahir(1932-11-04)4 November 1932Batavia, Hindia BelandaMeninggal11 Desember 200...

 

Saxifraga cintrana Classificação científica Reino: Plantae Clado: angiospérmicas Clado: eudicotiledóneas Ordem: Rosales Família: Saxifragaceae Género: Saxifraga Espécie: S. cintrana Nome binomial Saxifraga cintranaKuzinsky ex Willk. Saxifraga cintrana, commumente conhecida como quaresmas-de-sintra[1], é uma espécie de planta com flor pertencente à família Saxifragaceae. A autoridade científica da espécie é Kuzinsky ex Willk., tendo sido publicada em Oesterr. Bot. Z. 39: 318. 18...

 

1957年の毎日オリオンズ成績 パシフィック・リーグ4位 71勝55敗6分 勝率.563[1]本拠地都市 東京都文京区球場 後楽園球場 球団組織経営母体 毎日新聞社監督 別当薫« 19561958 » テンプレートを表示 1957年の毎日オリオンズでは、1957年シーズンの毎日オリオンズの動向についてまとめる。 この年の毎日オリオンズは、別当薫選手兼任監督の4年目(代行の1952年後半を

Bài viết này là một bài mồ côi vì không có bài viết khác liên kết đến nó. Vui lòng tạo liên kết đến bài này từ các bài viết liên quan; có thể thử dùng công cụ tìm liên kết. (tháng 8 2020) Chuyến bay 450 của Inex-Adria AvioprometYU-AJO, chiếc máy bay Douglas DC-9 của Inex-Adria Aviopromet bị tai nạn vào tháng 7 năm 1973Tai nạnNgày30 tháng 10 năm 1975Mô tả tai nạnĐiều khiển chuyến bay vào địa hình (CF...

 

2020 animated short film This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: DC Showcase: The Phantom Stranger – news · newspapers · books · scholar · JSTOR (July 2020) DC Showcase: The Phantom StrangerDirected byBruce TimmWritten byErnie AltbackerBased onThe Phantom Strangerby John BroomeCarmine Infan...

 

Resolusi 616Dewan Keamanan PBBLokasi insiden di Selat HormuzTanggal20 Juli 1988Sidang no.2.821KodeS/RES/616 (Dokumen)TopikRepublik Islam Iran-ASRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Aljazair Argentina Brasil Jerman Barat Italia Jepang   Nepal Senegal Yug...

Indian score composer, music director and playback singer Not to be confused with Jeet (actor) Jeet GannguliBackground informationBirth nameChandrajeet GangulyAlso known asJeet GangulyBorn (1977-05-24) 24 May 1977 (age 46)OriginBaranagar, KolkataGenresIndian classicalFilm scoresIndi-popSoundtrackOccupation(s)Playback SingerMusic directorMusic ComposerInstrumentsGuitarInstrumentPlayback Singing[1]Years active2001–presentLabelsSony Music, T-Series, Saregama, Zee Music, SVFMusical...

 

Election in North Dakota Main article: 1968 United States presidential election 1968 United States presidential election in North Dakota ← 1964 November 5, 1968[1] 1972 →   Nominee Richard Nixon Hubert Humphrey George Wallace Party Republican Democratic-NPL Independent Alliance American Independent Home state New York[a] Minnesota Alabama Running mate Spiro Agnew Edmund Muskie Curtis LeMay Electoral vote 4 0 0 Popular vote 138,669...

 

Pub in Nunhead, London For the property in Lancashire, see Ivy House (Lancashire). The Ivy House The Ivy House is a Grade II listed public house at 40 Stuart Road, Nunhead, London.[1] It was designed by the architect A. E. Sewell in the 1930s for Truman's Brewery.[1] It was originally known as the Newlands Tavern, and has many original features including a curved bar and timber panelled walls. It was one of the major pub music venues in South London during the mid-1970s pub ro...

Cimetière de CamerounPays GuinéeCommune commune de Dixinn (Conakry)Religion(s) musulmane, chrétienneCoordonnées 9° 32′ 50″ N, 13° 40′ 23″ O Géolocalisation sur la carte : Conakry Personnalités enterrées Ahmed Sékou Tourémodifier - modifier le code - modifier Wikidata Le cimetière de Cameroun est un cimetière guinéen situé dans la commune de Dixinn, l'une des communes constituant la ville de Conakry, non loin de la Mosquée Faycal[1]. H...

 

Der aktuelle Oberbürgermeister Pit Clausen, 2009 Dieser Artikel beschreibt die Geschichte der Stadtoberhäupter von Bielefeld. An der Spitze der Altstadt Bielefeld stand zunächst der vom Landesherrn ernannte Richter. Doch ist seit 1243 auch ein Rat nachweisbar, der zugleich das Schöffenkollegium bildete. Vorsitzender war ein eigens eingesetzter Richter. Ein Bürgermeister wird zuerst 1265 genannt. Später gab es einen sitzenden und einen „alten Rat“. In der Neustadt ist seit 1317 ein R...

 

Town in South AustraliaLittlehamptonSouth AustraliaLittlehampton Country Fire StationLittlehamptonCoordinates35°03′0″S 138°51′0″E / 35.05000°S 138.85000°E / -35.05000; 138.85000Population3,300 (SAL 2021)[1]Established1836Postcode(s)5250Location5 km (3 mi) from Mount BarkerLGA(s)Mount BarkerState electorate(s)KavelFederal division(s)Mayo Localities around Littlehampton: Hahndorf Balhannah Blakiston Totness Littlehampton Mount Barker Paechto...

Pain response test Tail flick test apparatus The tail flick test is a test of the pain response in animals, similar to the hot plate test. It is used in basic pain research and to measure the effectiveness of analgesics, by observing the reaction to heat. It was first described by D'Amour and Smith in 1941.[1] Procedure Most commonly, an intense light beam is focused on the animal's tail and a timer starts. When the animal flicks its tail, the timer stops and the recorded time (latenc...

 

Human settlement in EnglandRushdenSt Mary, RushdenRushdenLocation within HertfordshirePopulation242 (2011 Census)[1]OS grid referenceTL302315Civil parishRushdenDistrictNorth HertfordshireShire countyHertfordshireRegionEastCountryEnglandSovereign stateUnited KingdomPost townBUNTINGFORDPostcode districtSG9Dialling code01763PoliceHertfordshireFireHertfordshireAmbulanceEast of England UK ParliamentNorth East Hertfordshire List of places UK England H...

 

Запрос «БД» перенаправляется сюда; см. также другие значения. Схема базы данных движка Mediawiki Ба́за да́нных — совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных&#...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Brazil women's national futsal team – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) BrazilNickname(s)A Seleção (The Selection)As Canarinhas (The Female Canaries)Auriverde (Gold-and-Green)Verde-Amarela (Green-and-Ye...

 

Award ceremony 2011 MTV Video Music AwardsDateSunday, August 28, 2011LocationNokia Theatre (Los Angeles, California)CountryUnited StatesMost awardsKaty Perry and Adele (3 each)Most nominationsKaty Perry (10)Websitewww.mtv.com/vma/2011/Television/radio coverageNetworkMTV and VH1Produced byAmy Doyle Garrett English Jesse Ignjatovic Dave SirulnickDirected byHamish Hamilton ← 2010 · MTV Video Music Awards · 2012 → The 2011 MTV Video Music Awards took place on Aug...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!