미분 방정식(微分方程式, differential equation)은 미지의 함수와 그 도함수, 그리고 이 함수들의 함수값에 관계된 여러 개의 변수들에 대한 함수 방정식이다. 미분방정식의 계수(order)는 미분 횟수가 가장 많은 독립 변수의 계수가 결정짓고, 차수(degree)는 계수를 결정 지은 독립 변수의 미분꼴이 거듭제곱된 횟수에 따라 결정된다.[1]
응용 수학에서 한 매개 변수가 다른 매개 변수에 대한 의존성을 알 수 없는 문제가 종종 발생하지만 한 매개 변수가 다른 매개 변수 (미분)에 대한 변화율에 대한 표현을 작성할 수 있다. 이 경우 문제는 다른 표현과 관련된 도함수로 함수를 찾는 것으로 축소된다.
미분 방정식은 엔지니어링, 물리학, 경제학 등 수학 외의 학문에서도 중요한 역할을 차지하고, 유체역학, 천체역학 등의 물리적 현상의 수학적 모델을 만들 때에도 사용된다. 따라서 미분 방정식은 순수수학과 응용수학의 여러 분야에 걸쳐있는 넓은 학문이다. 물체의 운동이 물체의 위치와 시간값의 변화에 따른 속도로 표현되는 고전역학이 그 대표적인 예다. 뉴턴의 운동 법칙은 물체의 미지의 위치를 시간에 대한 함수로 표현하고, 물체의 위치·속도·가속도·그리고 물체에 작용하는 힘 등을 그 함수에 대한 미분 방정식으로 나타냄으로써 이 변량들을 역학적으로 표현할 수 있었다. 흔히 운동방정식이라고 부르는 이 미분 방정식은 아주 쉽게 풀리는 경우도 있다.
미분 방정식을 사용하여 실세계를 표현한 예로는, 중력과 공기저항만 고려하여 공중에서 떨어지는 공의 속도를 결정하는 것이 있다. 땅을 향한 공의 가속도는 중력에 의한 가속도 마이너스 공기저항에 의한 가속도이다. 중력은 일정하다고 치고, 공기저항은 공의 속도에 비례한다고 하자. 이것은 공의 가속도, 즉 공의 속도의 도함수가 공의 속도에 따라 결정된다는 것을 의미한다. 속도를 시간에 대한 함수로 나타내면 이 미분 방정식을 풀 수 있다.
수학에서 미분 방정식은 여러 가지 다른 관점에서 연구되고 있는데, 대개 그 해―방정식을 만족시키는 함수의 집합―에 대한 연구가 흔하다. 명쾌한 함수의 형태로 해가 구해지는 것은 가장 간단한 미분 방정식들 뿐으로, 어떤 미분 방정식은 명확한 해를 구하지 않고, 그 특징만 밝혀지는 경우도 있다. 만약 해를 독립적으로 구하는 것이 불가능하다면, 컴퓨터를 이용해 수적 근사값을 구할 수도 있다. 동역학계 이론에서는 미분 방정식으로 표현되는 계의 질적 분석을 중요하게 여기는데, 주어진 정확도 안에서 해를 구하기 위한 많은 수치 해석 방법이 개발되고 있다.
미분 방정식의 목표는 다음 세가지이다.
특정한 상황을 표현하는 미분 방정식을 발견하는 것.
그 미분 방정식의 정확한 해를 찾는 것.
그 찾은 해를 해석하여 미래를 예측하는 것.
미분 방정식에 대해 해가 있어야만 하는지, 아니면 해가 유일한지 등의 문제도 중요한 관심사이다. 그러나 응용수학자, 물리학자, 엔지니어들은 대개 주어진 미분 방정식을 푸는 데에 관심을 두기 마련이고, 여기서 얻어진 해는 전기회로, 다리, 자동차, 비행기, 하수도 등을 만드는 데에 이용되고 있다.