初等組合せ論における積の法則(せきのほうそく、英: rule of product)あるいは乗法原理 (multiplication principle) は基本的な組合せ原理(英語版)(数え上げの基本原理)の一つである。それは、簡単に言えば「ある場合が a 通り、別のある場合が b 通りあるとき、それらを同時に行う場合は a⋅b 通りある」ことを述べるものである[1][2]。
この例では、積の法則は 3 × 2 = 6 と表すことができる。
この例における集合 {A, B, C} および {X, Y}は互いに交わらないが、それは必要なことではない。
例えば、{A, B, C} から一つ選び、再度同じ集合から一つ選ぶとすれば、それは {A, B, C} の要素からなる順序対を選ぶことと理解されるから、3 × 3 = 9 通りになる。
別な例として、ピザの注文で生地の種類を薄いか厚いかの 2 種類と、トッピングをチーズ・ペペロニ・ソーセージの 3 種類から選べるとすると、積の法則を用いれば、ピザの注文方法が 2 × 3 = 6 通り可能であるとわかる。
集合論において、乗法原理は基数の積の定義に用いられる[1]。集合の濃度に関して | S 1 | ⋅ | S 2 | ⋯ | S n | = | S 1 × S 2 × ⋯ × S n | {\displaystyle |S_{1}|\cdot |S_{2}|\cdots |S_{n}|=|S_{1}\times S_{2}\times \cdots \times S_{n}|} が成り立つ(右辺の × はデカルト積演算である)。これらの各集合は有限集合である必要はなく、またこれら因子の数が有限個である必要もない。
数え上げの和の法則はもう一つの数え上げの基本原理である。簡単に言えば「ある場合が a 通り、別のある場合が b 通りで、それらを同時に行うことがないならば、それらの場合は a + b 通りある」ことを述べるものである[3]。