ホーア論理

ホーア論理(ホーアろんり、: Hoare logic)とは、公理的意味論の立場でプログラムの正当性について厳密に推論するために第一階述語論理を拡張した形式論理の言語を言う。

プログラムの正しさを証明するためのロバート・フロイドによる流れ図に関する方法[1]を基に、計算機科学者のアントニー・ホーアによって提案された[2]

概要

ホーア論理には、単純な命令型言語の全構成要素についての公理推論規則が備わっている。当初の論文にあったそれら規則に加えて、ホーアや他の研究者は様々な言語要素に関する規則を開発した。並行性に関する規則、プロシージャに関する規則、分岐に関する規則、ポインタに関する規則などがある。

定義

部分的正当性(partial correctness)

事前条件(precondition) P が成り立つときに、プログラム S を実行して、それが停止した場合においては必ず事後条件(postcondition) Q が成り立つならば、プログラム S は、事前条件 P と事後条件 Q とに関して部分的に正当(partially correct)であると言い[3]

P { S } Q

と記述する[4]。ホーアによる元々の記法は上記のものであるが、一般的にはプログラム S の部分正当性は、

{ P } S { Q }

と記述されることが多い[5][6]

正当性(correctness)

事前条件 P が成り立つときに、プログラム S を実行すると、その実行が必ず終了するならば、プログラム S は、事前条件 P に関して停止する(terminate)と言う[3]

プログラム S が部分的に正当かつ停止するものであるとき、すなわち、プログラム S が事前条件 P に関して停止し、停止後には必ず事後条件 Q が成り立つならば、プログラム S は、事前条件 P と事後条件 Q とに関して正当(correct)であるという[3]

部分的正当性の証明体系

(A1) 代入文の公理

{ Q[e/x] } x:=e { Q }

ここで、事前条件の Q[e/x] は置換であり、式 Q の中に出現するすべての x を式 e で置き換えた式を表す。一方で事後条件の Q は代入文実行後(置換ではなく代入を行ったあとの)x の値について式 Q が成り立つことを表す[3]

したがって、この公理は、

  1. { Q[e/x] }:式 Q 中の全ての x を e に置換するとき式 Q が成り立つのであれば、
  2. x:=e:(置換で成り立つならば、ほぼ同じような代入操作でも変わらないはずのため)式 Q 中の x の値を代入 x:=e で変更することで、
  3. { Q }:(置換の場合は成り立っているのであるから x の値が e に変更されたのであれば当然に)代入文実行後の式 Q は成り立つ、

というように読む[7]

(A2) 空文の公理

空文(skip文)は、プログラムの状態を変化させないが、これを表すのが空文の公理である。skip以前に真であったことはそのまま真となる。

{ P } skip { P }

(R1) 複合文の規則

一般に順序的プログラムは機能ごとに分解することができるが、その逆として分解した手続きは複合文として合成することができる。以下の複合文の規則は分解したプログラムが中間条件 R を介することで元の機能に合成されることを表している[8]

{ P } S1 { R } , { R } S2 { Q }
{ P } S1 ; S2 { Q }

(R2) if文の規則

{ P ∧ B } S1 { Q } , { P ∧ ¬B } S2 { Q }
{ P } If B Then S1 else S2 End { Q }


{ P ∧ B } S1 { Q } , P ∧ ¬B => Q
{ P } If B Then S1 End { Q }

(R3) while文の規則

{ P ∧ B } S1 { P }
{ P } While B Do S1 End { P ∧ ¬B }

ここで、Pループ不変条件である[9]

(R4) 帰結の規則

P => P1 , { P1 } S { Q1 } , Q1 => Q
{ P } S { Q }

例 1
(代入の公理)
(結果規則)
例 2
(代入の公理)
ここで xN は整数型)
(結果規則)

脚注

  1. ^ Floyd(1967)
  2. ^ Hoare(1969)
    このような経緯から、フロイド−ホーア論理(Floyd-Hoare Logic)とも呼ばれる。荒木・張(2002) p.23
  3. ^ a b c d 荒木・張(2002) p.7
  4. ^ これをホーアの三つ組(Hoare triple)と呼ぶこともある。
  5. ^ これは、ホーアの共同研究者であったニクラウス・ヴィルトが開発したプログラミング言語Pascalのコメント記法に由来していると考えられる。系統的(1986)
  6. ^ 部分的正当性に関するホーア論理では、プログラムの完了を示すことができない。もしプログラム S が完了しなければ事後条件の Q は意味を成さない。そのような事情から事後条件 Q を偽の値である false とすることで完了しないプログラムを
    { P } S { false }
    と表すこともある。
  7. ^ 正しい Triple の例:
    ホーアが提案した代入の公理は、複数の(変項の)名前が(メモリ上の)同じ格納値を参照している場合に「正しくない」。例えば、以下の例で x と y が同じ値を参照している場合
    この Triple は真ではない。なぜなら、 x に 2 を代入した後では y が 3 となるような事後状態は存在しないからである。
  8. ^ 例えば、次の2つの代入を考えてみよう。
    合成規則を適用すると、これらは次のようになる:
  9. ^ なお、完全正当性のための While 規則としては以下のようになる。
    この規則では、ループ不変条件が保持されるだけでなく、ループが終了することを証明するためにループ変化条件英語版 t を加えている。t整礎関係 (well-founded relation) の観点でループの反復ごとに厳密に減少していく値である。なお不変条件 P が与えられたとき、条件 Bt がその範囲の極小元でないことを暗に示さなければならず、さもなくば事前条件は偽となる。関係 "<" は整礎なので、ループの各ステップで有限英語版の元が減少していくことでカウントされる。また、ここで波括弧ではなく角括弧が使われているのは完全正当性を示すためであり、部分正当性のみならず完了も示す(これは、完全正当性の数ある記法の1つである)。

参考文献

関連項目

関連人物

外部リンク

  • KeY-Hoare - KeY という定理証明機上に構築された半自動検証システムで、ホーア論理を散りいれている。
  • j-Algo-modul Hoare calculus — アルゴリズム視覚化プログラム j-Algo におけるホーア論理視覚化モジュール

Read other articles:

  لمعانٍ أخرى، طالع بنبان (توضيح). اضغط هنا للاطلاع على كيفية قراءة التصنيف البنبان بنبان فلوريدا المرتبة التصنيفية جنس  التصنيف العلمي النطاق: حقيقيات النوى المملكة: حيوانات الشعبة: الحبليات غير مصنف: الفقاريات غير مصنف: الفكيات غير مصنف: شعاعيات الزعانف غير مصنف: جد

 

МуниципалитетАльколеа-де-лас-ПеньясAlcolea de las Peñas 41°12′38″ с. ш. 2°47′01″ з. д.HGЯO Страна  Испания Автономное сообщество Кастилия-Ла-Манча Провинция Гвадалахара Район Ла-Серрания Глава Хайме Гарсия Моралес[d] История и география Площадь 16 км² Высота 1003 м Часов

 

Seth NeddermeyerSeth Neddermeyer, photo de son badge au Los Alamos National Laboratory.BiographieNaissance 16 septembre 1907RichmondDécès 29 janvier 1988 (à 80 ans)SeattleNationalité américaineFormation Université StanfordCalifornia Institute of TechnologyOlivet College (en)Activités Physicien, professeur d'université, physicien nucléaireAutres informationsA travaillé pour Université de WashingtonDirecteur de thèse Carl David AndersonDistinctions Prix Enrico-Fermi (1982)Membr...

Swedish ice hockey player This article is about the forward. For the defenceman, see Johan Larsson (ice hockey, born 1986). Ice hockey player Johan Larsson Larsson with the Buffalo Sabres in 2016Born (1992-07-25) 25 July 1992 (age 31)Lau, SwedenHeight 5 ft 11 in (180 cm)Weight 202 lb (92 kg; 14 st 6 lb)Position Left wingShoots LeftAllsv teamFormer teams Brynäs IFMinnesota WildBuffalo SabresArizona CoyotesWashington CapitalsNational team  SwedenNHL...

 

State Forest in Klamath County, Oregon, United States Sun Pass State ForestSun Creek in the Sun Pass State Forest, May 2009TypePublic, stateLocationKlamath County, Oregon, United StatesCoordinates42°44′15″N 121°52′24″W / 42.7374°N 121.8733°W / 42.7374; -121.8733Area21,317 acres (86.27 km2)Operated byOregon Department of Forestry Sun Pass State Forest is one of six state forests managed by the Oregon Department of Forestry. The forest is located 40...

 

Body of myths associated with Judaism Part of a series onJewish culture Languages Hebrew Modern Ashkenazi Sephardi Mizrahi Yemenite Tiberian Medieval Mishnaic Biblical Samaritan Babylonian Palestinian Judeo-Aramaic Hulaulá Lishana Deni Lishán Didán Barzani Betanure Lishanid Noshan Targum Biblical Talmudic Palestinian Galilean Judeo-Arabic Yahudic Judeo-Baghdadi Judeo-Moroccan Judeo-Tripolitanian Djerbian Yemenite Other Jewish diaspora languages Yiddish Ladino Haketia Tetuani Yevanic Catala...

Overview of climatic conditions in Saudi Arabia Saudi Arabia's Köppen climate classification map. The climate of Saudi Arabia is marked by high temperatures during the day and low temperatures at night. The country follows the pattern of the desert climate, with the exception of the southwest, which features a subtropical highland climate and a semi-arid climate. Climate data for Haradh (1985-2010) Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Record high °C (°F) 33.0(91.4) 35...

 

  Rosa micrantha Rosa micranthaEstado de conservación No amenazadoTaxonomíaReino: PlantaeSubreino: TracheobiontaDivisión: MagnoliophytaClase: MagnoliopsidaOrden: RosalesFamilia: RosaceaeSubfamilia: RosoideaeTribu: RoseaeGénero: RosaEspecie: Rosa micranthaBorrer ex Sm. 1812[editar datos en Wikidata] Rosa micrantha es un arbusto de la familia de las rosáceas. Vista de la planta Flores Descripción Arbusto erecto, densamente ramificado, de hasta 1,5 m de altura, con ramas col...

 

American rock band ShinedownShinedown in 2012. From left to right: Zach Myers, Brent Smith, Eric Bass and Barry Kerch.Background informationOriginJacksonville, Florida, U.S.Genres Hard rock alternative metal post-grunge alternative rock pop rock DiscographyShinedown discographyYears active2001–presentLabels Atlantic Roadrunner Members Brent Smith Barry Kerch Zach Myers Eric Bass Past members Nick Perri Jasin Todd Brad Stewart Websiteshinedown.com Shinedown is an American rock band from Jack...

University in West Bengal, India Darjeeling Hills UniversityMottoExcellence . Inclusion . InnovationTypePublicEstablished2021AffiliationUGCChancellorGovernor of West BengalVice-ChancellorPrem Poddar(interim VC)[1]LocationDarjeeling, West Bengal, IndiaWebsitewww.dhuniv.in Darjeeling Hills University is a public state university in Darjeeling, West Bengal, India. The university was established in 2021 under The Greenfield University Act, 2018.[2][3] It became active with...

 

Hotel and casino in Atlantic City, New Jersey For the Las Vegas, Nevada based casino/resort operator, see Resorts International Holdings. Resorts Casino HotelThe two hotel towers at Resorts Location Atlantic City, New Jersey, U.S. Address 1133 Boardwalk, Atlantic City, New Jersey, U.S.Opening dateJuly 2, 1904 (hotel, as Chalfonte-Haddon Hall) May 26, 1978; 45 years ago (May 26, 1978) (casino)ThemeRoaring TwentiesNo. of rooms942[1]Total gaming space100,000 sq ft ...

 

Map The Mangaweka Deviation is a 7 km single track deviation of the North Island Main Trunk (NIMT) railway line in the central North Island of New Zealand, between the settlements of Mangaweka and Utiku, south of Taihape. Opened on 18 November 1981, by the Prime Minister, Robert Muldoon, it was constructed between 1973 and 1981 at a cost of $17m;[1] to move the line away from geologically unstable land; and also to replace the high-maintenance steel viaducts including the Mangawe...

Antarctica is one of the most physically and chemically extreme terrestrial environments to be inhabited by lifeforms.[1] The largest plants are mosses, and the largest animals that do not leave the continent are a few species of insects. Microbiome on the High Antarctic Plateau Climate and habitat Although most of the continent is covered by glacial ice sheets, ice-free areas comprising approximately 0.4% of the continental land mass are discontinuously distributed around the coastal...

 

Questa voce sull'argomento calciatori cecoslovacchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jiří Kotrba Nazionalità  Cecoslovacchia  Rep. Ceca (dal 1993) Calcio Ruolo Allenatore (ex difensore) Termine carriera 1988 - giocatore Carriera Squadre di club1 1976-1981 Bohemians ČKD Praga? (?)1981-1982 Tábor? (?)1982-1988 Dyn. Č. Budějovice? (?) Carriera da allenatore 19...

 

Comandante del Corpo dei Marines Commandant of the Marine CorpsBandiera del Comandante del Corpo Gen. Eric M. Smith in carica dal 22 settembre 2023 SiglaCMC Stato Stati Uniti d'America Organizzazione United States Marine Corps TipoCapo di stato maggiore In caricaEric M. Smith da22 settembre 2023 Istituito10 novembre 1775 de facto 12 luglio 1798 de jure Primo detentoreSamuel Nicholas Assistente Comandante del CorpoChristopher J. Mahoney Nominato daDal Presidente degli Stati Uniti (con parere e...

Chrysler 65 e 66Una Chrysler 65 roadster del 1929Descrizione generaleCostruttore  Chrysler Tipo principaleTorpedo Altre versioniRoadsterBerlinaCoupéLandaulet Produzionedal 1929 al 1931 Sostituisce laChrysler 62 Sostituita daChrysler CM Esemplari prodotti139.093[senza fonte] La Chrysler 65 è un'autovettura mid-size prodotta dalla Chrysler dal 1929 al 1931. Nel 1930 il modello fu rinominato Chrysler 66. All'epoca della sua commercializzazione, era il più piccolo modell...

 

Filloas recheias de compota de maçã. A filloa,[1] também chamada freixó,[2] é uma sobremesa típica da Galiza. Os ingredientes básicos são farinha, leite e ovos, podendo incluir também, na época da matança do porco, sangue de porco.[3] A massa é preparada de forma que possa formar uma camada delgada no fundo duma frigideira, passada com umas pinceladas de manteiga ou outra gordura. São típicas nas festas do entrudo.[3] Etimologia A palavra galega filloa, tal como acontece com a p...

 

God's Law and Man'sPoster lobiSutradaraJohn H. CollinsDitulis olehJohn H. Collins (skenario)BerdasarkanA Wife by Purchaseoleh Paul TrentPemeranViola DanaSinematograferJohn ArnoldPerusahaanproduksiColumbia Pictures CorporationDistributorMetro PicturesTanggal rilis 23 April 1917 (1917-04-23) Durasi5 reelsNegaraUSABahasaAntarjudul Inggris God's Law and Man's adalah sebuah film drama bisu tahun 1917 yang hilang[1] garapan John H. Collins dan didistribusikan oleh Metro Pictures. Film ...

Questa voce sull'argomento farmaci è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Questa voce o sezione sugli argomenti chimica e farmacologia non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Tintura di iodio su un vetro da orologio. La tintura di iodio è una soluzione al 7% (in p/v) di iodio e 5% di ioduro di potassio disciolti in un...

 

District in Primorsky Krai, RussiaShkotovsky District Шкотовский районDistrict FlagCoat of armsLocation of Shkotovsky District in Primorsky KraiCoordinates: 43°07′N 132°22′E / 43.117°N 132.367°E / 43.117; 132.367CountryRussiaFederal subjectPrimorsky Krai[1]Established4 January 1926Administrative centerSmolyaninovoArea[2] • Total2,664.5 km2 (1,028.8 sq mi)Population (2010 Census)[3] •&...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!