地中海の深さ約2.5kmに位置するANTARES(Astronomy with Neutrino Telescope and Abyss environmental RESearch)は2008年5月30日に完全に作動した。70メートル間隔で離れて配置された、12個の縦350メートルの検出器の糸からなり、それぞれ75個の光電子増倍管の光学モジュールを持つ。この検出器は周辺の海水を検出媒体として用いている。次世代の深海ニュートリノ望遠鏡KM3NeTの全装置体積は約5 km3となる予定である。検出器は地中海の3つの設置場所に分散される予定である。実施の第一段階は2013年より開始している。
Antarctic Muon And Neutrino Detector Array (AMANDA)は1996年から2004年まで稼働した。この検出器は南極点付近の南極氷河の深部(1.5-2km)に埋めた糸に装置した光電子増倍管を用いた。氷自体が検出媒体である。入射ニュートリノ方向はそれぞれが1つの光電子増倍管を持つ検出器モジュールの3次元的な配列を用いて個々の光子が到達する時間を記録することによって特定された。この方法で50GeV以上のニュートリノを空間分解能約2°で検出することができる。AMANDAは北天の地球外ニュートリノ源検索のためのニュートリノのマップを作成し、暗黒物質を探索するために使用された。AMANDAは現在、IceCube観測所に更新され、最終的に検出器配列の体積を1立方キロメートルに増やしている[8]。
^ abIan Sample (23 January 2011). “The hunt for neutrinos in the Antarctic”. The Guardian. https://www.theguardian.com/science/2011/jan/23/neutrino-cosmic-rays-south-pole2011年6月16日閲覧. "The $272m (£170m) IceCube instrument is not your typical telescope. Instead of collecting light from the stars, planets or other celestial objects, IceCube looks for ghostly particles called neutrinos that hurtle across space with high-energy cosmic rays. If all goes to plan, the observatory will reveal where these mysterious rays come from, and how they get to be so energetic. But that is just the start. Neutrino observatories such as IceCube will ultimately give astronomers fresh eyes with which to study the universe."
^NOνA Proposal to Build a 30 Kiloton Off-Axis Detector to Study Neutrino Oscillations in the Fermilab NuMI Beamline arXiv:hep-ex/0503053
^Dr David Whitehouse, BBC News Online science editor (15 July 2003). “Icebound telescope probes the Universe”. BBC News. http://news.bbc.co.uk/2/hi/science/nature/3068359.stm2011年6月16日閲覧. "Sensors in the ice have detected the rare and fleeting flashes of light caused when neutrinos interact with the ice. ... Amanda 2 (Antarctic Muon and Neutrino Detector Array - 2) is designed to look not up, but down, through the Earth to the sky of the Northern Hemisphere."
^ abPierre Le Hir (22 March 2011). “Tracking down the crafty neutrino”. Guardian Weekly. https://www.theguardian.com/science/2011/mar/22/france-science-nuclear-neutrino-lehir2011年6月16日閲覧. "But they are nevertheless almost undetectable: in just one second several tens of billions of neutrinos pass through every square centimetre of our bodies without us ever noticing. ... No magnetic field diverts them from their course, shooting straight ahead at almost the speed of light. ... Almost nothing stops them. ... Neutrinos are remarkably tricky customers. There are three types or flavours: electron, muon, and tau neutrinos, named after three other particles to which they give rise when they collide with an atom."
^ abDr David Whitehouse, BBC News Online science editor (22 April 2002). “Experiment confirms Sun theories”. BBC News. http://news.bbc.co.uk/2/hi/science/nature/1943837.stm2011年6月16日閲覧. "New evidence confirms last year's indication that one type of neutrino emerging from the Sun's core does switch to another type en route to the Earth. ... The data were obtained from the underground Sudbury Neutrino Observatory (SNO) in Canada. ... Neutrinos are ghostly particles with no electric charge and very little mass. They are known to exist in three types related to three different charged particles - the electron and its lesser-known relatives, the muon and the tau. ..."
^J.P. (Dec 1, 2010). “Hang on, that's not a neutrino”. The Economist. http://m.economist.com/babbage-tech-21013466.php2011年6月16日閲覧. "The largest, IceCube, sits deep underneath the South Pole in a cubic kilometre of perfectly clear, bubble-free ancient ice and is set to start working in earnest early next year. All rely on detecting the flickers of light emitted on the exceedingly rare occasions when a neutrino does interact with an atom of ice or water."