^Clarke, A (1990). “Temperature and evolution: Southern Ocean cooling and the Antarctic marine fauna”. Antarctic Ecosystems: 9–22. doi:10.1007/978-3-642-84074-6.
^LaMesa, Mario (2004). “The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review”. Polar Biology27: 321–338. doi:10.1007/s00300-004-0599-z.
^Artigues, Bernat (2003). “Fish length-weight relationships in the Weddell Sea and Bransfield Strait”. Polar Biology26: 463–467. doi:10.1007/s00300-003-0505-0.
^Cocca, E (1997). “Do the hemoglobinless icefishes have globin genes?”. Comp. Biochem. Physiol. A118: 1027–1030. doi:10.1016/s0300-9629(97)00010-8.
^Near, T. J.; Parker, S. K.; Detrich, H. W. (2006). “A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes”. Molecular Biology and Evolution23 (11): 2008–2016. doi:10.1093/molbev/msl071. PMID16870682.
^Barber, D. L; J. E Mills Westermann; M. G White (1981-07-01). “The blood cells of the Antarctic icefish Chaenocephalus aceratus Lönnberg: light and electron microscopic observations”. Journal of Fish Biology19 (1): 11–28. doi:10.1111/j.1095-8649.1981.tb05807.x. ISSN1095-8649.
^Holeton, George (2015-10-15). “Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg compared with three red-blooded Antarctic fish”. Comparative Biochemistry and Physiology34: 457–471.
^Grove, Theresa (2004). “Two species of Antarctic icefishes (Genus Champsocephalus) share a common genetic lesion leading to the loss of myoglobin expression”. Polar Biology27: 579–585.. doi:10.1007/s00300-004-0634-0.