Teorema di convoluzione

In matematica, il teorema di convoluzione afferma che sotto opportune condizioni la trasformata di Laplace, così come la trasformata di Fourier della convoluzione di due funzioni è il prodotto delle trasformate delle funzioni stesse. Questo teorema ha importanti risvolti nell'analisi dei segnali, in particolare nell'ambito delle reti lineari.

Enunciato

Siano e due funzioni la cui convoluzione è indicata da . Sia l'operatore trasformata di Fourier, sicché e sono le trasformate di e rispettivamente. Allora:

dove denota la moltiplicazione. Si ha anche che:

Applicando la trasformata inversa , si ottiene:

Si noti che la relazione è valida esclusivamente per le forme della trasformata mostrate nella dimostrazione riportata in seguito. Il teorema è valido anche per la trasformata di Laplace.

Dimostrazione

La dimostrazione presentata è mostrata per una particolare normalizzazione della trasformata di Fourier: nei casi in cui la normalizzazione sia differente, nella derivazione compare un fattore scalare.

Siano , appartenenti a . Sia la trasformata di Fourier di e la trasformata di :

dove il punto tra e indica il prodotto interno a . Sia la convoluzione di e :

Si nota che:

e quindi, per il teorema di Fubini, si ha che , e dunque la sua trasformata è definita dalla formulazione integrale:

Dal momento che:

grazie a quanto detto sopra si può applicare nuovamente il teorema di Fubini:

Sostituendo si ha quindi , e dunque:

Questi due integrali definiscono e , così:

come si voleva dimostrare.

Convoluzione discreta

Si può mostrare in modo simile che la convoluzione discreta di due successioni e è data da:

dove è la trasformata di Fourier a tempo discreto.

Un importante caso particolare è la convoluzione circolare di e definita da , dove è una sommazione periodica:

Si può allora mostrare che:

dove è la trasformata discreta di Fourier. Infatti, può essere scritta come:

così che il suo prodotto con è una funzione discreta:

La DTFT inversa è:

come si voleva dimostrare.

Bibliografia

  • (EN) Yitzhak Katznelson, An introduction to Harmonic Analysis, Dover, 1976, ISBN 0-486-63331-4.
  • (EN) Arfken, G. "Convolution Theorem." §15.5 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 810-814, 1985.
  • (EN) Bracewell, R. "Convolution Theorem." The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, pp. 108-112, 1999.

Voci correlate

Collegamenti esterni

Read other articles:

1954 studio album by Lee KonitzKonitzStudio album by Lee KonitzReleased1954RecordedAugust 6, 1954StudioNYCGenreJazzLength47:38 CD reissue with alternate takesLabelStoryvilleLP-313ProducerGeorge WeinLee Konitz chronology Lee Konitz at Storyville(1954) Konitz(1954) Lee Konitz in Harvard Square(1954-55) Black Lion Cover Konitz is an album by saxophonist and bandleader Lee Konitz featuring performances recorded in 1954 which was originally released as a 10-inch LP on George Wein's Storyvi...

 

«You'll See» Sencillo de Madonnadel álbum Something to RememberLado B «Live to Tell» (Live Edit)«You'll See» (instrumental)Publicación 18 de octubre de 1995Formato 7 12 casete CDGrabación Septiembre de 1995Estudio Chartmaker Studios (California) Brooklyn Studios (Nueva York)Género(s) PopDuración 4:39Discográfica Maverick Sire Warner Bros.Autor(es) Madonna David Foster Paz Martínez (versión en español)Productor(es) Madonna David FosterCronología de sencillos de Madonna «Human ...

 

Species of plant Betula celtiberica Bark Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Fagales Family: Betulaceae Genus: Betula Species: B. celtiberica Binomial name Betula celtibericaRothm. & Vasc. Synonyms[1] Betula pubescens subsp. celtiberica (Rothm. & Vasc.) Rivas Mart. Betula celtiberica, the Iberian white birch, is a species of flowering plant in the family Betulaceae, native to Great Britain...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2016. Badjoeri WidagdoLahir23 Februari 1945 (umur 78) Badjoeri Widagdo (lahir 23 Februari 1945) adalah seorang pengamat politik dan juga penulis buku politik asal Indonesia. Ia juga merupakan seorang perwira TNI dengan jabatan Brigjen TNI Purnawirawan. ...

 

Volcán Tolhuaca Tolhuaca y Laguna BlancaLocalización geográficaContinente AméricaCordillera AndesCoordenadas 38°18′36″S 71°38′42″O / -38.31, -71.645Localización administrativaPaís ChileDivisión MallecoLocalización ChileActivoCaracterísticas generalesTipo EstratovolcánAltitud 2.806 metrosGeologíaObservatorio Observatorio Vulcanológico de los Andes del SurÚltima erupción DesconocidoMapa de localización Volcán Tolhuaca Ubicación en Chile. [editar d...

 

Italian-Australian actress (born 1960) Greta ScacchiOMRIScacchi in January 2008Born (1960-02-18) 18 February 1960 (age 63)Milan, Lombardy, ItalyCitizenshipItalian, Australian, BritishAlma materBristol Old Vic Theatre SchoolOccupationActressYears active1981–presentPartnersTim Finn(1983–1989)Vincent D'Onofrio(1989–1993)Carlo Mantegazza(1997–2010)Children2, including Leila George Greta Scacchi, OMRI (Italian: [ˈɡrɛːta ˈskakki]; born 18 February 1960) is an Ita...

Untuk kegunaan lain, lihat Brand New Day.Brand New DayAlbum studio karya Iwan AbdieDirilis16 Agustus 2011Genrepop, jazzLabelOmega PacificProduserOmega Pacific Production Last album = -Kronologi Iwan Abdie Brand New Day (2011) -String Module Error: Match not foundString Module Error: Match not found Brand New Day merupakan sebuah album musik perdana milik penyanyi berkebangsaan Indonesia, Iwan Abdie yang dirilis pada tahun 2011. Lagu yang dijadikan andalan dalam album ini adalah Brand New ...

 

American politician (1844–1902) Cornelius A. CadmusMember of the U.S. House of Representativesfrom New Jersey's 5th districtIn officeMarch 4, 1891 – March 3, 1895Preceded byCharles D. BeckwithSucceeded byJames F. Stewart Personal detailsBorn(1844-10-07)October 7, 1844Elmwood Park, New JerseyDiedJanuary 20, 1902(1902-01-20) (aged 57)Paterson, New JerseyPolitical partyDemocratic Cornelius Andrew Cadmus (October 7, 1844 – January 20, 1902) was an American Democrat...

 

Non-steroidal anti-inflammatory drug LoxoprofenClinical dataAHFS/Drugs.comInternational Drug NamesRoutes ofadministrationOral, transdermalATC codeM02AA31 (WHO) Legal statusLegal status JP: Class 1 OTCBR: Red Stripe (Rx only) Pharmacokinetic dataProtein binding97%MetabolismLiver glucuronidationElimination half-life75 minutesExcretionKidneyIdentifiers IUPAC name (RS)-2-{4-[(2-oxocyclopentyl)methyl]phenyl}propanoic acid CAS Number68767-14-6 NPubChem CID3965DrugBankDB09212 YCh...

Swedish citizens of Italian descent Italian SwedesItalo-svedesi (Italian)Svenskitalienare (Swedish)Italian street vendor selling plaster work in Stockholm early 20th centuryTotal population19,087[1] 0.2% of the Swedish population (2012)[1]Regions with significant populationsStockholm and GothenburgLanguagesSwedish · Italian and Italian dialectsReligionRoman CatholicismRelated ethnic groupsItalians, Italian Belgians, Italian Britons, Italian Finns, Itali...

 

2005 studio album by Jon StevensThe WorksStudio album by Jon StevensReleased14 November 2005RecordedEastern Bloc Studios, Melbourne The BasementGenreAcoustic, Blues musicLength53:48 [1]LabelLiberation BlueProducerJon StevensJon Stevens chronology Ain't No Life For The Faint Hearted(2004) The Works(2005) Changing Times(2011) The Works is an acoustic studio album by Australian singer-songwriter, Jon Stevens. It was released on the Liberation Blue label in November 2005 and featu...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (December 2016) This article needs a plot summary. Please add one in your own words. (April 2023) (Learn how and when to remove this template messag...

Wrestling at the Olympics Men's heavyweight freestyle wrestlingat the Games of the III OlympiadVenueFrancis FieldDateOctober 15Competitors5 from 2 nationsMedalists Bernhoff Hansen  Norway Frank Kugler  Germany Fred Warmbold  United States1908 → Wrestling at the1904 Summer OlympicsFreestyleLight flyweightmenFlyweightmenBantamweightmenFeatherweightmenLightweightmenWelterweightmenHeavyweightmenvte The heavyweight was the heaviest freestyle wrestling weight cla...

 

Religion in Lesotho (Afrobarometer 2020)[1]   Protestantism (52%)  Catholicism (41%)  Others / None (7%) St. Michael's Cathedral. Lesotho is a predominantly Christian nation. Christianity is the dominant religion in Lesotho,[2] with Protestantism and Catholicism being its main denominations.[3][4] The 2022 United States Department of State report found Protestants slightly outnumbered Catholics.[2] Non-Christian religions r...

 

Thana in Dhaka Division, BangladeshMohammadpur মোহাম্মদপুরThanaMohammadpurLocation in BangladeshCoordinates: 23°45.3′N 90°21.8′E / 23.7550°N 90.3633°E / 23.7550; 90.3633CountryBangladeshDivisionDhaka DivisionDistrictDhaka DistrictArea • Total11.65 km2 (4.50 sq mi)Population (2011) • Total355,843 • Density31,000/km2 (79,000/sq mi)Time zoneUTC+6 (BST)Postal code1207WebsiteOfficial ...

Professional associationAn editor has nominated this article for deletion.You are welcome to participate in the deletion discussion, which will decide whether or not to retain it.Feel free to improve the article, but do not remove this notice before the discussion is closed. For more information, see the guide to deletion.Find sources: Association of Corporate Counsel – news · newspapers · books · scholar · JSTOR%5B%5BWikipedia%3AArticles+for+deletion%...

 

1922 novel by John Buchan Huntingtower First edition coverAuthorJohn BuchanLanguageEnglishSeriesDickson McCunnGenreThrillerSet inScotlandPublisherHodder & Stoughton[1]Publication date1922[1]Media typePrintPages318[1]Followed byCastle Gay  Huntingtower is a 1922 novel by the Scottish author John Buchan, initially serialised in Popular Magazine between August and September 1921.[2] It is the first of his three Dickson McCunn books, the act...

 

German Association of Craftsmen Building by Mies van der Rohe in the Weissenhof Estate (1927) 1914 exhibition poster Weißenhof chair, by Mies van der Rohe with canework upholstery by Lilly Reich[1] (ca. 1927) The Deutscher Werkbund (English: German Association of Craftsmen; German: [ˈdɔʏtʃər ˈvɛrkbʊnd]) is a German association of artists, architects, designers and industrialists established in 1907. The Werkbund became an important element in the development of modern...

Museum dedicated to John F. Kennedy in Dallas, Texas, U.S. Sixth Floor MuseumThe Texas School Book Depository (now the Dallas County Administration Building)EstablishedFebruary 20, 1989LocationDealey Plaza, Dallas, Texas (411 Elm Street Dallas, TX 75202)Coordinates32°46′47″N 96°48′31″W / 32.7798°N 96.8085°W / 32.7798; -96.8085TypeHistoricVisitors400,000DirectorNicola LongfordCuratorStephen FaginPublic transit accessDART 11,12,19,21,35,60,63,81/82,161,164, 2...

 

Forgách utcaStasiun Budapest MetroLokasiBudapest, HungariaKoordinat47°32′21″N 19°04′11″E / 47.53917°N 19.06972°E / 47.53917; 19.06972Koordinat: 47°32′21″N 19°04′11″E / 47.53917°N 19.06972°E / 47.53917; 19.06972KonstruksiKedalaman471 meter (1.545 ft)SejarahDibuka14 Desember 1990[1]Dibangun kembali30 Maret 2019Operasi layanan Stasiun sebelumnya   Budapest Metro   Stasiun berikutnya Árpád hídmenuju...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!