Iterative deepening depth-first search o IDDFS è una strategia di ricerca in uno spazio di stati (state space search) nella quale è eseguita ripetutamente una ricerca depth-limited, incrementando il limite di profondità (depth limit) ad ogni iterazione sino al raggiungimento di d {\displaystyle d} , la profondità più piccola in cui trovare lo stato obiettivo.[3]
È una strategia di ricerca particolarmente efficace, poiché ad ogni iterazione, visita i nodi nell'albero di ricerca nello stesso ordine di una ricerca depth-first, ma in questo caso l'ordine cumulativo nel quale i nodi sono visitati per primi (assumendo l'assenza di pruning) è effettivamente una ricerca in ampiezza.
La ricerca iterative deepening depth-first combina l'efficienza in spazio della ricerca depth-first e la completezza della ricerca breadth-first (quando il branching factor è finito). Dal momento che la strategia restituisce lo stato soluzione legato al nodo con la profondità minore nell'albero di ricerca, è ottimale quando il costo del percorso è una funzione non-decrescente (monotona) della profondità del nodo.
La complessità in spazio dell'IDDFS è O ( d ) {\displaystyle O(d)} ,[2] dove d {\displaystyle d} è la profondità della soluzione più vicina alla radice. Questo è dovuto al fatto che l'algoritmo non è altro che un susseguirsi di ricerche in profondità, quindi in memoria verrà mantenuto uno stack di al più d {\displaystyle d} stati contemporaneamente.
L'iterative deepening genera più volte gli stessi nodi e ciò potrebbe sembrare dispendioso, ma in fin dei conti non lo è tanto, in quanto in un albero la maggior parte dei nodi sono nel livello più basso, quindi non preoccupa molto il fatto che i livelli superiori siano visitati più volte.[3] Maggiore è il branching factor, minore è l'overhead dell'espansione ripetuta degli stati intermedi, ma anche quando il branching factor è 2, l'iterative deepening spende solo il doppio in tempo rispetto ad una ricerca breadth-first completa.
Il maggior vantaggio in questo algoritmo nella ricerca su alberi è che le prime ricerche tendono a migliorare le euristiche maggiormente utilizzate, come la euristica killer e la potatura alfa-beta, e quindi si ha una stima più accurata del peso dei vari nodi alla fine della ricerca in profondità, e il completamento della ricerca avviene più velocemente in quanto effettuata in un ordine migliore.
Infatti la complessità in tempo dell'IDDFS in alberi bilanciati è dello stesso ordine della ricerca in profondità — O ( b d ) {\displaystyle O(b^{d})} , dove b {\displaystyle b} è il branching factor.
In una ricerca iterative deepening i nodi posti in basso sono espansi una volta, quelli successivi all'ultimo livello sono espansi due volte, e così via, sino alla radice dell'albero di ricerca, che è espanso d + 1 volte. Così il numero totale di espansioni in una ricerca iterative deepening è
Sia ad esempio b = 10 e d = 5, allora si avrà
Una ricerca iterative deepening che parte dalla profondità 1 e cerca per tutte le strade sino alla profondità d espande circa l'11 % di nodi in più rispetto a una singola ricerca breadth-first o a una ricerca depth-limited con limite d {\displaystyle d} , quando b = 10 {\displaystyle b=10} .
In generale, l'iterative deepening è la ricerca preferita quando c'è un vasto spazio di ricerca e la profondità della soluzione non è nota a priori.
Questo algoritmo (in pseudocodice) è una possibile implementazione della strategia di iterative deepening: sfrutta l'algoritmo di ricerca in profondità limitata incrementando a ogni iterazione la profondità massima a cui cercare.
IterativeDeepening(root, goal){ for(profondità = 1; root != goal; profondità++) => : root = DLS(root, goal, profondità) } DepthLimitedSearch(nodo, goal, profondità){ if(profondità >= 0): if(nodo == goal) => : return(nodo) foreach(child in visita(nodo)) => : DepthLimitedSearch(child, goal, profondità-1) }