Algebra semplice

In matematica, specialmente nella teoria degli anelli si dice algebra semplice un'algebra che non contiene alcun ideale bilatero proprio e tale che l'insieme {ab | a, b sono elementi dell'algebra} non coincide con il solo zero {0}.

La seconda condizione richiesta, previene la seguente situazione: si considera un'algebra

con le consuete operazioni matriciali. Questa è un'algebra mono-dimensionale nella quale il prodotto di 2 elementi qualsiasi è zero. Questa condizione assicura che l'algebra abbia un minimo ideale sinistro non nullo; ciò semplifica alcune situazioni.

Un esempio immediato di un'algebra semplice è un'algebra di divisione (ad esempio l'algebra reale dei quaternioni), nella quale ogni elemento ammette inverso rispetto all'operazione di moltiplicazione.

Inoltre si può dimostrare che l'algebra delle matrici n × n con elementi appartenenti ad un anello di divisione è un'algebra semplice. Questo caratterizza tutte le algebre semplici a meno di isomorfismo, poiché ogni algebra semplice risulta isomorfa ad un'algebra matriciale su un anello di divisione.

Questo risultato fu scoperto nel 1907 da Joseph Wedderburn nella sua tesi di dottorato "On Hypercomplex numbers" apparsa in "Proceedings of the London Mathematical Society". Wedderburn distinse le algebre in semplici e semisemplici, dimostrando che le algebre semplici sono gli elementi di base per generare le algebre semi-semplici. Ogni algebra semisemplice di dimensione finita è il prodotto cartesiano in senso algebrico di algebre semplici.

Il risultato di Wedderburn fu successivamente generalizzato ad un anello semisemplice nel teorema di Artin-Wedderburn.

Esempi

Un'algebra centrale semplice (detta anche algebra Brauer) è un'algebra semplice di dimensione finita su un campo "F", il cui centro è "F".

Algebre semplici in algebra universale

Nell'algebra universale, un'algebra astratta A è detta "semplice" se e solo se non ha alcuna relazione di congruenza propria, o se, equivalentemente, ogni omomorfismo con dominio A è iniettivo o costante.

Dal momento che le congruenze tra anelli sono in corrispondenza coi loro ideali, questa nozione è una generalizzazione diretta della nozione valida nella teoria degli anelli. Un anello è semplice, cioè non ha alcun ideale proprio, se e solo se è semplice nel senso dell'algebra universale (salvo eventualmente il caso speciale di un'algebra banale con un solo elemento).

Un teorema di Roberto Magari del 1969 afferma che ogni varietà (cioè una classe di algebre dello stesso tipo definita mediante equazioni) possiede almeno un'algebra semplice.[1]

Note

  1. ^ (EN) W.A. Lampe, Taylor, W., Simple algebras in varieties, in Algebra Universalis, vol. 14, n. 1, 1982, pp. 36-43, DOI:10.1007/BF02483905. URL consultato il 16 febbraio 2017 (archiviato dall'url originale l'11 aprile 2013). La dimostrazione originale apparve in R. Magari, Una dimostrazione del fatto che ogni varietà ammette algebre semplici, in Annali dell'Università di Ferrara, Sez. VII, vol. 14, n. 1, 1969, pp. 1-4, DOI:10.1007/BF02896794. URL consultato il 3 luglio 2011 (archiviato dall'url originale l'11 aprile 2013).

Bibliografia

Voci correlate

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Read other articles:

Human settlement in EnglandLawnswoodThe Lawnswood ArmsLawnswoodShow map of LeedsLawnswoodLocation within West YorkshireShow map of West YorkshireMetropolitan boroughCity of LeedsMetropolitan countyWest YorkshireRegionYorkshire and the HumberCountryEnglandSovereign stateUnited KingdomPost townLEEDSPostcode districtLS16Dialling code0113PoliceWest YorkshireFireWest YorkshireAmbulanceYorkshire UK ParliamentLeeds North West List of places UK England Yorkshire 53°51...

 

Ariel del Mastro Información personalNombre de nacimiento Ariel del Mastro AcostaNacimiento 30 de septiembre de 1962 Buenos Aires, ArgentinaNacionalidad ArgentinoFamiliaPadres Nacha GuevaraAnteo del MastroPareja Paola Daniela RusconiHijos Macarena y Anteo[editar datos en Wikidata] Ariel del Mastro (Buenos Aires, 30 de septiembre de 1962)[1]​ es un director argentino de musicales. Es el primer hijo de la actriz argentina Nacha Guevara (1940) y del periodista Anteo del Mastro (...

 

Гражина Станішевськапол. Grażyna Staniszewska Народилася 2 листопада 1949(1949-11-02) (74 роки)Бельсько-Бяла, Республіка ПольщаКраїна  Республіка ПольщаДіяльність політична діячка, філолог, вчителькаAlma mater Ягеллонський університетЗнання мов польськаЧленство СолідарністьПосада ч

Observatorium W. M. KeckBagian dariObservatorium Mauna Kea LokasiHawaii, ASKoordinat19°49′35″N 155°28′28″W / 19.8263°N 155.47441°W / 19.8263; -155.47441Koordinat: 19°49′35″N 155°28′28″W / 19.8263°N 155.47441°W / 19.8263; -155.47441 Ketinggian4.145 m (13.599 ft) Observasi perdana24 November 1993, 23 Oktober 1996 Model teleskopTeleskop pemantulastronomical observatory Jumlah teleskop2 ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) روجر باوتشر (بالفرنسية: Roger Boucher)‏    معلومات شخصية الميلاد 13 يناير 1885  الوفاة 20 أكتوبر 1918 (33 سنة)   باريس  مواطنة فرنسا  الحياة العملية المدرسة ا...

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوقة. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (أغسطس 2022) جامعة نيويورك أبو ظبي معلومات التأسيس 2010  الموقع الجغرافي إحداثيات 24...

Makam Umberto I Humbert I (bahasa Italia: Umberto I; skt. 980  – 1042 atau 1047 x 1048), lebih dikenal sebagai Humbert yang Bertangan Putih (Prancis: Humbert aux blanches-mains) atau Humbert Whitehand (bahasa Italia: Umberto Biancamano)[2]merupakan seorang pendiri Wangsa Savoia. Pengabdiannya kepada kaisar Jerman Heinrich II dan Konrad II dihargai dengan wilayah Maurienne dan Aosta dan wilayah di Valais, yang seluruhnya dengan biaya uskup setempat dan uskup agu...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Jemparingan Jemparingan yaitu salah satu olahraga tradisional yang biasanya dilakukan di lingkungan keraton. Dalam Kamus Besar Bahasa Indonesia (KBBI) Daring, hanya terdapat kata jemparing yang berarti panah.[1] Kata jemparing dalam Bausastra J...

 

This article is about the South Indian political party. For party founded by Udit Raj, see Indian Justice Party. Political party in India Justice Party LeaderC. Natesa MudaliarPresidentTheagaroya Chetty Raja of PanagalB. Munuswamy NaiduRaja of BobbiliE. V. Ramasamy P. T. RajanGeneral SecretaryArcot Ramasamy Mudaliar[1]FounderC. Natesa Mudaliar T. M. Nair Theagaroya ChettyFounded1917Dissolved27 August 1944Preceded byMadras Dravidian AssociationSucceeded byDravidar Kazhaga...

Richard John, eigentlich Richard Jonas, (7. März 1845 in Berlin – 13. März 1928 in Wien) war ein deutscher Theaterschauspieler und -regisseur. Leben Der Sohn eines Buchhändlers wurde ebenfalls für den Beruf seines Vaters bestimmt und obgleich er doch in Berlin und Leipzig und sogar in Amerika in demselben tätig war, bis er 1871 – er hatte schon früher gegen den Willen seines Vaters bei Theodor Döring dramatischen Unterricht genommen – zur Bühne ging. Er befand sich zur Zeit dies...

 

2003 live album by Cowboy JunkiesIn the Time Before LlamasLive album by Cowboy JunkiesReleasedNovember 18, 2003[1]RecordedMay 1, 1990March 6, 1992GenreAlternative country[2]Length1:17:50[1]LabelStrange FruitProducerAnthony Pugh, Mark Radcliffe, Pete Ritzema[3]Cowboy Junkies chronology Platinum & Gold Collection(2003) In the Time Before Llamas(2003) One Soul Now(2004) Professional ratingsReview scoresSourceRatingEncyclopedia of Popular Music[4 ...

 

1917 novel by Edgar Wallace For the South Korean television series, see The Secret House (TV series). The Secret House AuthorEdgar WallaceCountryUnited KingdomLanguageEnglishGenreThrillerPublisherWard LockPublication date1917Media typePrint The Secret House is a 1917 thriller novel by the British writer Edgar Wallace. It featured the return of several characters who had appeared in his earlier work The Nine Bears.[1] References ^ Clark, Neil. Stranger than Fiction: The Life of Ed...

Town in the Northern Territory, AustraliaJabiruNorthern TerritoryJabiruCoordinates12°40′S 132°50′E / 12.667°S 132.833°E / -12.667; 132.833Population1,081 (2016 census)[1]Postcode(s)0886Elevation27 m (89 ft)Location256 km (159 mi) from DarwinLGA(s)West Arnhem RegionTerritory electorate(s)ArafuraFederal division(s)Lingiari Mean max temp Mean min temp Annual rainfall 34.2 °C 94 °F 22.6 °C 73 °F 1,586.2 mm 62.4 in Jabiru is a to...

 

1996 book by Judy Carter The Homo Handbook: Getting in Touch with Your Inner Homo: A Survival Guide for Lesbians and Gay Men AuthorJudy CarterCountryUnited StatesLanguageEnglishGenreSelf help, non-fictionPublisherSimon & SchusterPublication dateOctober 7, 1996Media typePrint (hardback and paperback)ISBN0-68481-358-0Preceded byStand-up Comedy: The Book Followed byThe Comedy Bible  The Homo Handbook: Getting in Touch with Your Inner Homo: A Survival Guide for Lesbia...

 

2006 German television film DresdenGenreWar, Drama, RomanceWritten byStefan KolditzNikolaus Kraemer (idea)Directed byRoland Suso RichterStarringFelicitas WollJohn LightBenjamin SadlerComposersHarald KloserThomas WankerCountry of originGermanyOriginal languagesGermanEnglishProductionProducers Nico Hofmann Nikolaus Kraemer Sascha Schwingel CinematographyHolly FinkEditorBernd SchlegelRunning time176 minutes / 145 minutes (theatrical release)Budget€10,000,000 (estimated)Original releaseNetworkZ...

Berikut ini adalah daftar kastel dan istana di Inggris yang diurutkan menurut abjad. A Abbeydale Hall (South Yorkshire) Abbeystead House * (Lancashire) en Acton Burnell Castle *** (Shropshire) en Addington Palace ** (London) en Alberbury Castle * (Shropshire) en Albury Park ** (Surrey) en Alderwasley Hall (Derbyshire) Aldford Castle (Cheshire) en Alnwick Castle *** (Northumberland)en | es | ja | no | pt | ru | fi | sv Althorp House (Northamptonshire) en Alton Castle *** (Staffordshire) en Amb...

 

Brewery in Hoegaarden, Belgium Hoegaarden BreweryTypeBreweryIndustryAlcoholic beverageFounded1445; 578 years ago (1445)HeadquartersHoegaarden, BelgiumProductsBeerOwnerAnheuser-Busch InBevWebsitehoegaarden.com Hoegaarden Brewery (/ˈhuːɡɑːrdən/, Dutch: [ˈɦuɣaːrdə(n)] ⓘ) is a brewery in Hoegaarden, Belgium, and the producer of a witbier, which is different from a wheat beer. Hoegaarden de-emphasizes hops, and is unfiltered, giving it the hazy, or milky, app...

 

1CAKJenis situssitus hiburanPemilikAjinium[1][2]SloganFor Fun Only!Situs webhttps://1cak.com/Peringkat Alexa 1.763 (Hingga 17 Februari 2021[update])Daftar akunOpsionalDiluncurkan17 Februari 2012[1] 1CAK (dibaca wancak) adalah situs hiburan yang menyediakan gambar dan video yang diunggah penggunanya. Situs ini juga dikenal sebagai penyedia hiburan lewat meme internet. Yang didirikan oleh Ajinium Sejarah 1CAK didirikan oleh Ajinium pada 17 Februari 2012...

Den här artikeln omfattas av Wikipedias policy om biografier. Den saknar källhänvisningar och kan inte verifieras. (2022-05) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Alf Håkan Åkesson är en svensk artist och musiker; kompositör och textförfattare; producent och masteringtekniker. Uppvuxen i sydskånska Abbekås, sedan 2000 bosatt i Sto...

 

Robert Plant song In the MoodSingle by Robert Plantfrom the album The Principle of Moments B-sideHorizontal DepartureReleasedNovember 1983Recorded1983StudioRockfield Studios (Monmouth, Wales)GenrePop rockLength5:19LabelEs ParanzaSongwriter(s) Robert Plant Robbie Blunt Paul Martinez Producer(s) Robert Plant Benji LeFevre Pat Moran Robert Plant singles chronology Big Log (1983) In the Mood (1983) Little by Little (1985) Music videoIn the Mood on YouTube In the Mood is a song by the English rock...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!