Integral Riemann tidak cocok untuk banyak tujuan teoretis. Beberapa kekurangan teknis dalam integral Riemann diperbaiki dengan integral Riemann–Stieltjes, dan sebagian besar menghilang dengan integral Lebesgue, meskipun yang terakhir tidak memiliki perlakuan yang memuaskan untuk integral takwajar. Integral Henstock–Kurzweil adalah generalisasi integral Lebesgue yang sekaligus lebih dekat ke integral Riemann. Teori-teori yang lebih umum ini memungkinkan integrasi fungsi yang lebih "bergerigi" atau "sangat berosilasi" pada bagian integral Riemann yang tidak ada; tetapi teori memberikan nilai yang sama dengan integral Riemann jika memang ada.
Dalam pengaturan pendidikan, integral Darboux menawarkan definisi yang lebih sederhana dan yang lebih mudah digunakan; biasanya digunakan untuk memperkenalkan integral Riemann. Integral Darboux didefinisikan setiap kali pada integral Riemann, dan selalu memberikan hasil yang sama. Sebaliknya, integral Henstock–Kurzweil adalah generalisasi integral Riemann yang sederhana namun lebih kuat dan telah mengarahkan beberapa pendidik untuk menganjurkan bahwa hal itu harus menggantikan integral Riemann dalam kursus kalkulus pengantar.[2]
Ikhtisar
Misalkan merupakan fungsi bernilai real taknegatif pada interval , dan misalnya
sebagai wilayah bidang bawah pada grafik fungsi dan atas interval (lihat gambar pada bagian kanan atas). Apabila tertarik untuk mengukur luas . Setelah mengukurnya, kita akan menunjukkan luas dengan:
.
Ide dasar integral Riemann adalah menggunakan pendekatan yang sederhana untuk luas . Dengan mengambil aproksimasi yang lebih baik dan lebih baik, kita mengatakan bahwa "dalam batas" kita mendapatkan luas yang tepat pada bagian bawah kurva.
Dimana keduanya bisa menjadi positif dan negatif, definisi dimodifikasi, sehingga integralnya sesuai dengan luas bertanda pada bagian bawah grafik : yaitu, luas atas sumbu- dikurangi luas bawah sumbu-.
Definisi
Partisi selang
Sebuah partisi selang adalah barisan bilangan hingga berbentuk
Setiap [xi, xi + 1] disebut sub-selang dari partisi. Jaring atau norma partisi didefinisikan sebagai panjang sub-selang terpanjang, yaitu,
.
Partisi tanda dari suatu interval adalah partisi bersama dengan barisan bilangan hingga bersubjek pada syarat bahwa untuk setiap , . Dengan kata lain, itu adalah partisi bersama dengan titik yang dibedakan dari setiap sub-selang. Jaring partisi yang diberi tag sama dengan partisi biasa.
Misalkan dua partisi dan keduanya merupakan partisi dari interval . Bahwa adalah penghalusan dari jika untuk setiap bilangan bulat , dengan adalah bilangan bulat sehingga dan sehingga untuk suatu dengan . Dengan lebih sederhana, penghalusan partisi tanda memecahkan beberapa sub-selang dan menambahkan tanda ke partisi (jika perlu), sehingga "penghalus" sebagai keakuratan partisi.
Maka, kita dapat mengubah himpunan semua partisi tanda menjadi himpunan berarah dengan satu partisi tanda besar lebih dari atau sama dengan yang lain jika yang pertama adalah penghalusan dari yang terakhir.
Jumlah Riemann
Misalkan adalah fungsi bernilai real yang didefinisikan pada interval . Jumlah Riemann dari berhubung dengan partisi tanda bersama dengan adalah[3]
.
Setiap istilah dalam jumlah adalah darab dari nilai fungsi pada titik tertentu dan panjang interval. Akibatnya, setiap istilah mewakili luas (bertanda) persegi panjang dengan tinggi dan lebar . Jumlah Riemann adalah luas (bertanda) dari semua persegi panjang.
Konsep yang terkait adalah jumlah Darboux bawah dan atas. Ini mirip seperti dengan jumlah Riemann, namun tanda diganti dengan infimum dan supremum (masing-masing) dari f untuk setiap sub-selang:
Jika adalah kontinu, maka jumlah Darboux bawah dan atas untuk partisi tak-bertanda sama dengan jumlah Riemann untuk partisi itu, dimana tanda dipilih sebagai minimum atau maksimum (masing-masing) pada setiap sub-selang? Ketika terputus dengan sub-selang, mungkin tidak ada tanda yang mencapai infimum atau supremum pada sub-selang tersebut. Integral Darboux yang mirip dengan integral Riemann tetapi berdasarkan jumlah Darboux, setara dengan integral Riemann.
Integral Riemann
Secara khusus, integral Riemann adalah limit dari jumlah Riemann dari suatu fungsi ketika partisi menjadi halus. Apabila limitnya ada, maka fungsi tersebut dikatakan terintegrasi (atau lebih spesifik terintegrasi-Riemann). Jumlah Riemann dapat dibuat sedekat yang diinginkan dengan integral Riemann dengan membuat partisi halus.[4]
Salah satu persyaratan penting adalah bahwa hubungan partisi menjadi lebih kecil dan lebih kecil, sehingga dalam limitnya adalah nol. Jika tidak demikian, maka kita tidak akan mendapatkan aproksimasi yang baik untuk fungsi pada sub-selang tertentu. Sebenarnya, hal ini cukup untuk mendefinisikan integral. Untuk lebih spesifik, dengan menyatakan bahwa integral Riemann dari sama dengan jika kondisi berikut berlaku:
Untuk semua , terdapat sehingga untuk partisi bertanda dan yang hubungannya kurang dari , maka
.
Sayangnya, definisi ini sangat sulit digunakan. Hal ini akan membantu untuk mengembangkan definisi yang setara dari integral Riemann yang lebih mudah untuk dikerjakan. Kita mengembangkan definisi ini sekarang, dengan bukti kesetaraan berikut. Definisi baru kita mengatakan bahwa integral Riemann dari sama dengan jika syarat berikut berlaku:
Untuk semua , terdapat partisi bertanda dan sehingga untuk setiap partisi bertanda dan yang merupakan penghalusan dari dan , kita mempunyai
Pada akhirnya, kedua hal ini berarti bahwa jumlah Riemann dari berhubung dengan setiap partisi akan terungkap dekat . Karena ini benar maupun tidak peduli seberapa dekat kita menuntut jumlah terungkap, kita mengatakan bahwa jumlah Riemann konvergen ke . Definisi ini sebenarnya merupakan kasus khusus dari konsep yang lebih umum yaitu sebuah jaring.
Seperti yang kita nyatakan sebelumnya, kedua definisi ini adalah ekuivalen. Dengan kata lain, berfungsi dalam definisi pertama jika dan hanya jika berfungsi dalam definisi kedua. Untuk menunjukkan bahwa definisi pertama menyatakan definisi kedua, mulailah dengan , dan pilih yang memenuhi kondisi. Pilih partisi bertanda yang hubungannya kurang dari . Jumlah Riemann-nya berada dalam dari , dan setiap penghalusan dari partisi ini juga akan memiliki hubungan kurang dari , jadi jumlah Riemann dari penghalusan juga akan berada dalam dari .
Untuk menunjukkan bahwa definisi kedua menyatakan definisi pertama, paling mudah menggunakan integral Darboux. Pertama, satu menunjukkan bahwa definisi kedua setara dengan definisi integral Darboux; untuk ini lihat artikel integral Darboux. Sekarang kita akan menunjukkan bahwa fungsi integral Darboux memenuhi definisi pertama. Menetapkan , dan pilih partisi sehingga jumlah Darboux bawah dan atas sehubungan dengan partisi ini berada dalam dari nilai integral Darboux. Maka
.
Jika , maka adalah fungsi nol, yang jelas merupakan integral Darboux dan Riemann dengan integral nol. Oleh karena itu, kita akan mengasumsikan bahwa . Jika , maka kita memilih sehingga
Jika , maka kita memilih kurang dari satu. Pilih partisi bertanda dan dengan hubungan lebih kecil dari . Kita harus menunjukkan bahwa jumlah Riemann berada dalam dari .
Untuk melihat ini, pilih selang . Jika selang ini terdapat dalam beberapa , maka
dimana dan , infimum dan supremum dari pada . Jika semua selang memiliki sifat ini, maka ini akan menyimpulkan buktinya, karena setiap suku dalam jumlah Riemann akan dibatasi oleh suku yang bersesuaian dalam jumlah Darboux, dan kita memilih jumlah Darboux yang mendekati . Ini adalah kasus ketika menjadi bukti yang selesai dalam kasus itu.
Oleh karena itu, kita dapat mengasumsikan . Dalam hal ini, mungkin salah satu dari tidak terkandung dalam [yj, yj + 1]. Sebaliknya, hal tersebut mungkin membentang dua selang yang ditentukan oleh . Hal itu tidak dapat memenuhi tiga interval karena diasumsikan lebih kecil dari panjang salah satu interval. Dalam simbol, maka
.
Kita berasumsi bahwa semua pertidaksamaan ketat karena jika tidak, kita berada dalam kasus sebelumnya dengan asumsi panjang . Ini bisa saja terbukti paling banyak mengkali .
Untuk menangani kasus ini, kita akan memperkirakan perbedaan antara jumlah Riemann dan jumlah Darboux dengan membagi partisi di . Penyebutan dalam jumlah Riemann dibagi menjadi dua penyebut:
Misalkan, tanpa kehilangan keumuman, bahwa . Maka
,
jadi suku ini dibatasi oleh suku yang bersesuaian dalam jumlah Darboux untuk . Untuk mengikat bentuk lainnya, perhatikan bahwa
,
Oleh karena itu, untuk suatu (memang ada) ,
.
Karena ini terjadi paling banyak mengkali , jarak antara jumlah Riemann dan jumlah Darboux paling banyak . Oleh karena itu, jarak antara jumlah Riemann dan paling banyak ε.
Contoh
Misalkan sebagai fungsi yang mengambil nilai 1 setiap titik. Setiap jumlah Riemann dari pada akan memiliki nilai 1, oleh karena itu integral Riemann dari pada [0, 1] adalah 1.
Misalkan sebagai fungsi indikator dari bilangan rasional di ; yaitu, mengambil nilai 1 pada bilangan rasional dan 0 pada bilangan irasional. Fungsi ini tidak memiliki integral Riemann. Untuk membuktikan ini, kita akan menunjukkan bagaimana membangun partisi bertanda yang jumlah Riemannnya mendekati nol dan satu secara berurutan.
Untuk memulai, maka dan menjadi partisi bertanda (setiap diantara dan ). Pilihlah . telah dipilih, dan nilai tidak dapat diubah pada titik tersebut. Tetapi jika kita memotong partisi menjadi potongan-potongan kecil disekitar , kita dapat meminimalkan efek . Kemudian, dengan memilih tanda baru secara hati-hati, kita dapat membuat nilai penjumlahan Riemann berada dalam dari nol atau satu.
Langkah pertama kita adalah memotong partisi. Ada dari , dan ingin efek totalnya kurang dari . Jika membatasi masing-masing dari mereka ke selang yang panjangnya kurang dari , maka kontribusi dari setiap pada jumlah Riemann paling sedikit dan paling banyak . Ini setidaknya membuat jumlah total nol dan paling banyak dari . Jadi δ menjadi bilangan positif yang kurang dari . Jika kebetulan dua dari berada dalam δ satu sama lain, pilihlah lebih kecil. Jika terjadi bahwa beberapa berada dalam δ dari beberapa xj, dan ti tidak sama dengan , pilihlah δ lebih kecil. Karena hanya ada dan , kita selalu dapat memilih secukupnya kecil.
Sekarang kita tambahkan dua potongan ke partisi untuk setiap . Salah satu potongan berada di , dan yang lainnya akan berada di . Jika salah satu dari ini meninggalkan selang maka kita tinggalkan. akan menjadi tanda yang sesuai dengan sub-selang
.
Jika berada tepat diatas salah satunya , maka kita misalkan sebagai tanda untuk kedua selang:
dan .
Kita harus memilih tanda untuk sub-selang lainnya. Apabila memilih mereka dalam dua cara yang berbeda. Cara pertama adalah selalu memilih tititk rasional, sehingga jumlah Riemann sebesar mungkin. Ini akan membuat nilai jumlah Riemann setidaknya . Cara kedua adalah selalu memilih titik irasional, sehingga jumlah Riemann sekecil mungkin. Ini akan membuat nilai jumlah Riemann banyak .
Karena baru memulai dari partisi sembarang dan berakhir sedekat yang diinginkan dengan nol atau satu, salah satunya salah untuk mengatakan bahwa akhirnya terjebak dekat suatu bilangan , maka fungsi ini tidak diintegrasikan Riemann. Namun, ini adalah integral Lebesgue. Dalam pengertian Lebesgue integralnya adalah nol, karena fungsinya adalah nol hampir di mana-mana. Tapi ini adalah fakta yang berada di luar jangkauan integral Riemann.
Ada contoh yang buruk lagi. setara (yaitu, hampir sama di semua tempat) dengan fungsi integral Riemann, tetapi ada fungsi-fungsi hingga tak-terintegrasi Riemann yang tak-ekuivalen dengan fungsi-fungsi tak-terintegrasi Riemann mana pun. Misalnya, menjadi himpunan Smith–Volterra–Cantor, dan menjadi fungsi indikatornya. Karena tak-terukur Jordan, maka tidak dapat diintegrasikan Riemann. Selain itu, tidak ada fungsi yang setara dengan yang dapat diintegrasikan Riemann: , seperti yang harus nol pada himpunan rapat, jadi seperti pada contoh sebelumnya, setiap jumlah Riemann dari memiliki penghalusan yang berada dalam dari 0 untuk bilangan positif suatu . Tetapi jika integral Riemann dari memang ada, maka ia harus sama dengan integral Lebesgue dari , yaitu . Oleh karena itu, tidak dapat diintegrasikan Riemann.
Konsep serupa
Sangat populer untuk mendefinisikan integral Riemann sebagai integral Darboux. Ini karena integral Darboux secara teknis lebih sederhana dan karena suatu fungsi dapat terintegral (secara) Riemann jika dan hanya jika terintegral (secara) Darboux.
Beberapa buku kalkulus tidak menggunakan partisi bertanda umum, tetapi limit-diri pada jenis tertentu dari partisi bertanda. Jika jenis partisi memiliki banyak limit, beberapa fungsi tak-terintegralkan mungkin tampak terintegralkan.
Salah satu limit terkenal adalah penggunaan jumlah Riemann "-kiri" dan "-kanan". Dalam jumlah Riemann kiri, untuk semua i, dan dalam jumlah Riemann kanan, untuk semua . Pembatasan ini saja tidak menimbulkan masalah: dapat diperbaiki partisi dengan cara menjadikannya jumlah kiri atau kanan dengan membagi setiap ti. Dalam bahasa formal, himpunan dari semua jumlah Riemann kiri dan himpunan dari semua jumlah Riemann kanan adalah kofinal pada himpunan semua partisi bertanda.
Batasan terkenal lainnya adalah penggunaan sub-pembagi reguler dari suatu selang. Misalnya, subdivisi reguler ke- dari terdiri dari interval
.
Sekali lagi, batasan ini hanya saja tidak menimbulkan masalah, tetapi penalaran yang diperlukan untuk melihat penyesuaian ini lebih sulit daripada dalam kasus penjumlahan Riemann kiri dan kanan.
Namun, menggabungkan batasan ini, sehingga hanya menggunakan jumlah Riemann kiri atau tangan kanan pada selang bertanda reguler, adalah bahaya. Jika suatu fungsi diketahui sebelumnya sebagai integral Riemann, maka teknik ini akan memberikan nilai integral yang benar. Tetapi pada kondisi ini fungsi indikator akan tampak terintegralkan pada dengan integral sama dengan satu: Setiap titik akhir dari setiap sub-selang akan menjadi bilangan rasional, jadi fungsi dievaluasi pada bilangan rasional, dan karena itu akan tampak selalu sama dengan satu. Masalah dengan definisi ini menjadi jelas ketika kita mencoba membagi integral menjadi dua bagian. Persamaan berikutnya berlaku:
.
Jika kita menggunakan pembagian biasa dan jumlah Riemann kiri atau kanan, maka dua suku sebelah kiri sama dengan nol, karena setiap titik akhir kecuali 0 dan 1 akan irasional, tetapi seperti yang telah kita lihat, suku sebelah kanan akan sama dengan 1.
Seperti yang didefinisikan di atas, integral Riemann menghindari masalah ini dengan tidak menggunakan untuk mengintegrasikan Integral Lebesgue didefinisikan sedemikian rupa sehingga semua integral ini adalah 0.
Sifat
Linearitas
Integral Riemann adalah transformasi linear; yaitu, jika dan terintegralkan dengan Riemann pada dan dan adalah konstanta, maka
.
Karena integral Riemann dari suatu fungsi adalah bilangan, ini membuat integral Riemann menjadi fungsional linear pada ruang vektor dari fungsi integral Riemann.
^Integral Riemann diperkenalkan dalam makalah Bernhard Riemann "Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe" (terjemahan: Tentang keterwakilan suatu fungsi oleh deret trigonometri; yaitu, ketika suatu fungsi diwakili oleh deret trigonometri). Makalah ini diajukan ke Universitas Göttingen pada tahun 1854 sebagai Habilitationsschrift oleh Riemann (kualifikasi untuk menjadi instruktur). Yang diterbitkan pada tahun 1868 di Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Prosiding Royal Philosophical Society di Göttingen), vol. 13, halaman 87-132. (Tersedia online disini.) Untuk definisi Riemann tentang integralnya, lihat bagian 4, "Über den Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit" (terjemahan: Tentang konsep integral tertentu dan tingkatan validitasnya), halaman 101-103.
Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN0-486-63519-8.
Apostol, Tom (1974), Mathematical Analysis, Addison-Wesley
CzechoslovakiaFIBA zoneFIBA EuropeNational federationBasketball Federation of CzechoslovakiaU16 European ChampionshipAppearances5Medals Gold: 1 (1989) Silver: 1 (1987) The Czechoslovakia women's national under-16 basketball team was a national basketball team of Czechoslovakia. It represented the country in women's international under-16 basketball competitions. FIBA U16 Women's European Championship participations Year Result inDivision A 1976[1] 4th 1980[2] 5th 1987[3 ...
Forma de Antropomorfismo em anime e mangá A Wikipe-tan, representação visual da Wikipédia em forma humana com traços moe. Antropomorfismo moe ou Moe gijinka (萌え擬人化, Moe gijinka? lit. antropomorfismo moe) é a representação visual daquilo que não é humano, como objetos, veículos, animais ou ideias, em forma humana, geralmente no estilo do mangá e anime, grande parte desta tendência originou de círculos dōjin e a explosão da cultura moe. Parte do humor desta antrop...
Émile Loubet, door Fernand-Anne Piestre Émile François Loubet (Marsanne, 30 december[1] 1838 - Montélimar, 20 december 1929) was een Frans politicus en president van de Franse Republiek. Achtergrond en opleiding Émile Loubet was de zoon van een hereboer die meerdere malen burgemeester van Marsanne is geweest. Hij studeerde rechten in Parijs en promoveerde in 1863. In 1863 was hij getuige van de grote verkiezingsoverwinning van de Republikeinse partij in Parijs en sloot zich daarn...
Les migrations serbes dans les Balkans revêtent une grande importance politique, linguistique et culturelle dans l'histoire des Serbes. Ces migrations ont été motivées par diverses raisons : certaines, massives mais ponctuelles, sont conséquence de la politique d'occupation turque, comme la grande migration de 1690 ; d’autres, plus diffuses mais sur des périodes plus longues, parfois des siècles, furent des déplacements causés par la surpopulation ou par des problèmes en...
لمعانٍ أخرى، طالع بيتر غوردون (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) بيتر غوردون معلومات شخصية الميلاد سنة 1963 (العمر 59–60 سنة) وانجانوي مواطنة نيوزيلندا الحياة العمل...
Jaarlijkse herdenking Nederlands Auschwitz Comité op de Nieuwe Oosterbegraafplaats bij het Spiegelmonument in 1979 Het Nederlands Auschwitz Comité is een stichting die in 1955 is opgericht door een aantal overlevenden van Auschwitz-Birkenau, onder wie Annetje Fels-Kupferschmidt, die later ere-voorzitter van het comité werd. Doelstelling Het doel van de in Amsterdam gevestigde stichting is: het realiseren van de zinspreuk Nooit meer Auschwitz het ageren tegen alle vormen van fascisme, racis...
British writer Guy BurtGuy Burt at MCM London Oct 2019BornEnglandOccupationwriterYears active2010 – present Guy Burt (born 14 July 1972) is an English author and BAFTA award-winning screenwriter who has worked on series such as The Borgias, and Wire in the Blood and is currently working on adapting the Alex Rider TV series.[1] Early life Burt wrote his first novel during his gap year from school, when he was 18. He read English literature at Oxford University and eventually bec...
Ini adalah nama Korea; marganya adalah Kim. Kim Dong Wan김동완 (金烔完)Informasi latar belakangLahir21 November 1979 (umur 44)AsalKorea SelatanGenre K-pop J-pop Dance Pekerjaan Penyanyi aktor Tahun aktif1998–sekarangLabelSM Entertainment(1998–2003)Good Entertainment(2004–2007)Liveworks Company(2010–2014)Universal D(2010-sekarang)Shinhwa Company(2011–sekarang)CI Entertainment(2014–sekarang)Artis terkaitShinhwaSitus webhttp://www.shinhwacompany.co.kr/ Nama KoreaHangul김동
2015 film by Ridley Scott The MartianTheatrical release posterDirected byRidley ScottScreenplay byDrew GoddardBased onThe Martianby Andy WeirProduced by Simon Kinberg Ridley Scott Michael Schaefer Mark Huffam Starring Matt Damon Jessica Chastain Kristen Wiig Jeff Daniels Michael Peña Kate Mara Sean Bean Sebastian Stan Aksel Hennie Chiwetel Ejiofor CinematographyDariusz WolskiEdited byPietro ScaliaMusic byHarry Gregson-WilliamsProductioncompanies Scott Free Productions Kinberg Genre TSG Enter...
Die Liste gesamtstaatlicher Vorschriftensammlungen erfasst fortlaufende Gesetz- und Amtsblätter sowie konsolidierende Sammlungen von Rechts- und Verwaltungsvorschriften auf gesamt- und überstaatlicher Ebene. Siehe auch: Liste teilstaatlicher Vorschriftensammlungen Land Kürzel Kont. Spr. Titel Laufzeit Links Aegypten Ägypten EG Af ara الجريدة الرسمية 1892?– alamiria.com Aequatorialguinea Äquatorialguinea GQ Af fre Boletin oficial del estado 1980?– Aethiopien...
ebut.pl Stal Gorzów 2022 2024 Ekstraliga 5. miejsce Liczba żużlowców 14 seniorów, 5 juniorów Prezes Waldemar Sadowski Trener Stanisław Chomski Kierownik drużyny Krzysztof Orzeł Kapitan Martin Vaculík Średnia frekwencjau siebie 11 061 Sezon 2023 był 57. Stali Gorzów Wielkopolski w ekstralidze i 76. w historii klubu. Rozgrywki Statystyki Zasady klasyfikacji: minimum 1 start w rozgrywkach ekstraligi w sezonie 2023. Msc. Żużlowiec Wiek M. B. Pkt. Bon. Razem Śr. bieg. KSM 4 Martin ...
Pedro Pablo CaroBornPedro Pablo Caro Rodríguez(1875-05-12)12 May 1875San Antonio de Petrel, Pichilemu, ChileDied3 July 1959(1959-07-03) (aged 84)Rancagua, ChileNationalityChileanAlma materUniversity of ChileOccupationLawyerSpouse(s)Clementina Leiva Espinoza (married 1902)Elena Salinas MonzónChildren6Parent(s)José María Caro MartínezRita Rodríguez Cornejo Pedro Pablo Caro Rodríguez (12 May 1875 – 3 July 1959) was a Chilean lawyer. After obtaining the degree of law and politi...
Attempt to persuade or to determine the truth of a conclusion This article is about the subject as it is studied in logic and philosophy. For other uses, see Argument (disambiguation). An argument is a series of sentences, statements or propositions some of which are called premises and one is the conclusion.[1] The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persuasion. Arguments are intended to determine or show the degree of...
Leang Samongkeng IIIGua Samongkeng III, Gua Samungkeng III, Gua Samongkeng 3, Gua Samungkeng 3Lua error in Modul:Location_map at line 425: Kesalahan format nilai koordinat.LokasiKampung Bonto Labbu, Lingkungan Leang-Leang, Kelurahan Leang-Leang, Kecamatan Bantimurung, Kabupaten Maros, Sulawesi Selatan, IndonesiaKoordinat04°58'48.1S 119°39'44.7E[1]Geologikarst / batu kapur / batu gampingSitus webvisit.maroskab.go.idcagarbudaya.kemdikbud.go.idkebudayaan.kemdikbud.go.id/bpcbsulsel/ Wis...
Star in the constellation Caelum This article is about γ2 Caeli. For other stars with this Bayer designation, see γ Caeli. X Caeli The constellation Caelum near the horizon, with the four main stars marked by a line Observation dataEpoch J2000 Equinox J2000 Constellation Caelum Right ascension 05h 04m 26.19316s[1] Declination −35° 42′ 17.7574″[1] Apparent magnitude (V) 6.28 – 6.39[2&...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2016) (Learn how and when to remove this template message) Fiske PlanetariumEstablished1975 (1975)Location2414 Regent Dr, Boulder, Colorado, U.S.Coordinates40°0′13″N 105°15′48″W / 40.00361°N 105.26333°W / 40.00361; -105.26333DirectorJohn KellerOwnerUniversity of Colo...
Fictional character from Holby City Fictional character Kyla TysonHolby City characterFirst appearanceI'll Be Back8x17, 7 February 2006Last appearanceSweet Bitter Love11x09, 9 December 2008Created byRichard StokesPortrayed byRakie AyolaIn-universe informationOccupationStaff nurse (2008)Ward sister (2006-2008)SpouseHarvey TysonChildrenMax TysonNationalityWelsh[1]RomancesJustin FullerAbra Durant Kyla Tyson is a fictional character from the BBC medical drama Holby City, portrayed by actr...
American aviator and aeronautical engineer (1904–1970) Benjamin Odell Howard (February 4, 1904 – December 4, 1970[1]), was an American aviator and aeronautical engineer, whose aircraft won the Bendix Trophy and the Thompson Trophy in 1935.[2] History At 17 Howard's interest in flying was sparked when he saw a band of gypsy fliers performing in their flying circus. By 18 he had saved up enough cash to buy an OX-5 powered Standard biplane. In those days learning how to f...
Questa voce sull'argomento calciatori malgasci è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ibrahim Amada Nazionalità Madagascar Altezza 176 cm Peso 71 kg Calcio Ruolo Centrocampista Squadra svincolato Carriera Squadre di club1 2006-2010 Académie Ny Antsika? (?)2011 JS Kabylie11 (0)2011-2012 AS Khroub13 (1)2012-2015 USM El Harrach72 (8)2015-2017 ES Sétif37 (1)2017-2019...