A matematika, azon belül a gráfelmélet területén a klikk(clique) egy irányítatlan gráf csúcsainak olyan halmaza, melyek feszített részgráfjateljes; tehát a klikk bármely két csúcsa között van él, bármely két csúcsa szomszédos. A klikk a gráfelmélet alapvető fogalmai közé tartozik, számos matematikai problémában és gráfkonstrukcióban előkerülnek. A klikkeket a számítástudomány is behatóan tanulmányozta: annak eldöntése, hogy létezik-e egy gráfban adott méretű klikk (a klikkprobléma) NP-teljes; a probléma nehézsége ellenére számos, klikkek keresésére szolgáló algoritmus létezik.
Egy G = (V, E)irányítatlan gráfCklikkje csúcsainak olyan C ⊆ V részhalmaza, melyben bármely két csúcs szomszédos. Ezzel ekvivalens megfogalmazás, hogy a G gráf C által feszített részgráfjateljes gráf. Egyes esetekben a klikk kifejezés alatt magát a feszített részgráfot értjük.
A klikk csúcsainak számát a klikk méretének vagy rendjének is mondják. A k csúcsú klikket röviden k-klikknek is nevezik.
A maximális klikk(maximal clique) a gráf olyan klikkje, ami nem terjeszthető ki szomszédos csúcsok hozzáadásával, tehát csúcsai nem képezik egy másik klikk valódi részhalmazát. Egyes szerzők klikk-meghatározása eleve magában foglalja a maximalitás kritériumát, ők a nem maximális teljes részgráfokra más terminológiát alkalmaznak.
A maximális elemszámú klikk(maximum clique) a G gráfnak olyan klikkje, aminél nincsen több csúcsból álló klikk a gráfban.
A G gráf klikkszáma a maximális elemszámú klikkjének a mérete; a jele ω(G).
A G gráf metszetszáma(intersection number) a G éleit lefedő klikkek lehetséges minimális száma.
A G gráf klikkfedési száma(clique cover number) a G csúcsait lefedő (nem feltétlenül diszjunkt) klikkek lehetséges minimális száma.
A klikk „ellentéte” a független csúcshalmaz, abban az értelemben, hogy minden klikk a komplementer gráf egy független csúcshalmazának felel meg. A klikkfedési probléma a gráf csúcsait lefedő minimális számú klikk megkeresése.
Kapcsolódó fogalom a bi-klikk, páros klikk avagy teljes páros részgráf. Egy gráf biklikkfedési száma (bipartite dimension), d(G) a gráf éleit lefedő páros klikkek lehetséges minimális száma.
Egy gráf klikkgráfja az a gráf, aminek minden pontja megfelel az eredeti gráf egy-egy maximális klikkjének, és két pont akkor van összekötve, ha a megfelelő klikkek metszete nem üres.
Eredmények
A klikkekkel kapcsolatos matematikai eredmények közül néhány:
Tetszőleges gráfra teljesül, hogy (az i-edik csúcs fokszámátdi-vel jelölve)
A legkisebb olyan R szám, amire egy R csúcsú gráfban biztosan van egy m csúcsú klikk vagy egy n elemű független ponthalmaz, az Ramsey-szám. A Ramsey-tétel kimondja, hogy minden m-re és n-re létezik ilyen szám, de a pontos értékük meghatározása nehéz feladat.
A klikkszám mindig kisebb vagy egyenlő, mint a kromatikus szám; azt a gráfot, aminek minden feszített részgráfjára teljesül, hogy a klikkszáma megegyezik a kromatikus számával, perfekt gráfnak nevezzük. A legnagyobb olyan n csúcsú gráf, amiben nincs k csúcsú klikk, a Turán-gráf.
A Turán-tétel (Turán 1941) alsó korlátot ad a sűrű gráfok klikkjeinek méretére. Ha egy gráf elegendően sok éllel rendelkezik, tartalmaznia kell egy nagy klikket. Például minden, csúccsal és több mint éllel rendelkező gráfban kell lennie 3-klikknek.
(Moon & Moser 1965) eredménye szerint egy 3n csúcsból álló gráf legfeljebb 3n maximális klikket tartalmazhat. A korlátot ténylegesen elérő gráfok a K3,3,... Moon–Moser-gráfok , a Turán-tétel extremális eseteként fellépő Turán-gráfok speciális esetei.
Egy húrgráf olyan gráf, melynek csúcsaira létezik olyan rendezés, hogy bármely v csúcs környezetében lévő csúcsok közül a rendezésben utána következő csúcsok klikket alkotnak (bármely feszített részgráf tartalmaz szimpliciális csúcsot).
Egy intervallumgráf olyan gráf, melynek maximális klikkjeire létezik olyan rendezés, hogy bármely v csúcsra a v-t tartalmazó klikkek egymás után következnek a rendezésben.
Egy élgráf olyan gráf, melyben lehetséges klikkek olyan éldiszjunkt gyűjteményét azonosítani (megengedve, hogy egyes klikkek egyetlen csúcsból álljanak), melyek a gráf éleit úgy particionálják, hogy a gráf minden csúcsa pontosan két klikkbe tartozzon.
A G gráfhoz tartozó irányítatlan κ(G) szimplexgráf egy csúcsot tartalmaz G minden klikkjéhez és minden olyan klikk között húzódik él, melyek egyetlen csúcsban különböznek. A mediángráfok közé tartozik, és kapcsolódik a gráf klikkjeinek medián algebrájához: az A, B, és C klikken értelmezett m(A,B,C) medián egy olyan klikk, melynek csúcsai az A, B és C klikkek közül legalább kettőbe beletartoznak.[2]
A klikk-összeg művelet segítségével két gráf egy közös klikk mentén összefűzhető.
A klikkszélesség egy gráf bonyolultságát fejezi ki annak fényében, hogy legalább hány különbözően címkézett csúcsra van szükség ahhoz, hogy a gráfot felépítsük a diszjunkt unió, átcímkézés és az adott címkéjű csúcspárok összekötésének művelete segítségével. Az 1 klikkszélességű gráfok éppen a diszjunkt klikkekből felépített gráfok (klasztergráfok).
Egy gráf metszetszáma éleit lefedő klikkek lehetséges minimális száma.
Maga a „klikk” kifejezés és gráfelméleti használata (Luce & Perry 1949) munkásságából ered, aki az ismeretségi hálózatok teljes részgráfjaival modellezte az emberekből álló klikkeket; tehát olyan embercsoportokat, akik közül mindenki ismer mindenkit. Az ismeretségi hálózatok gráfelméleti vizsgálatának további fejleményeihez lásd pl. (Alba 1973), (Peay 1974) és (Doreian & Woodard 1994).
A bioinformatika számos különböző problémáját modellezték klikkek segítségével. Például (Ben-Dor, Shamir & Yakhini 1999) a génkifejeződési adatok klaszterezésének problémáját úgy modellezi, mint egy gráf diszjunkt klikkek uniójává való átalakításához szükséges lépések minimális számát; (Tanay, Sharan & Shamir 2002) egy hasonló biklaszterezési problémát tárgyal, mely megköveteli, hogy minden klaszter egyben klikk legyen. (Sugihara 1984) a klikkek segítségével modellezi a táplálékláncokniche-eit. (Day & Sankoff 1986) filogenetikai fák (evolúciós leszármazási vonalak) kikövetkeztetésének problémáját úgy írja le, mint egy olyan gráf maximális elemszámú klikkjeinek megkeresését, melyben a csúcsok a fajok tulajdonságait jelentik, és két csúcs akkor szomszédos, ha a két tulajdonság tökéletesen (homoplázia nélküli törzsfejlődési vonallal) összeköthető. (Samudrala & Moult 1998) a fehérjeszerkezet-előrejelzést úgy modellezik, mint klikkek keresését egy olyan gráfban, melynek csúcsai a fehérjék alegységeinek elhelyezkedéseinek felelnek meg. És a fehérjék közötti kölcsönhatások hálózatában klikkek keresésével (Spirin & Mirny 2003) fehérjék olyan klaszterét találta meg, melyek egymással szorosan kölcsönhatnak, de a klaszteren kívül kevés fehérjével lépnek kölcsönhatásba. A power graph analysis nevű módszer egyszerűsíti a komplex biológiai hálózatokat azzal, hogy a klikkeket és hasonló struktúrákat tekinti a hálózat alapvető építőelemeinek.
A villamosmérnöki szakmában (Prihar 1956) a klikkek segítségével analizált távközlési hálózatokat, (Paull & Unger 1959) pedig részlegesen specifikált Boole-függvények számításával hatékony áramkörök tervezésére használta őket. Klikkeket alkalmaztak automatikus tesztmintázat-előállításra is: a lehetséges hibák ún. inkompatibilitási gráfjában lévő nagy klikk alsó korlátot ad a teszthalmaz méretére.[3] (Cong & Smith 1993) leírja a klikkek egy alkalmazási területét egy elektronikus áramkör kisebb alegységekre való hierarchikus particionálásában.
Ez a szócikk részben vagy egészben a Clique (graph_theory) című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Jegyzetek
↑(Kuratowski 1930) korábbi, a síkgráfokat tiltott teljes, illetve teljes páros részgráfok alapján karakterizáló munkája eredetileg nem gráfelméleti, hanem topológiai megközelítésben íródott.