A matematika, azon belül a gráfelmélet területén egy split gráf, hasított gráf vagy kettéhasadó gráf(split graph) olyan gráf, melynek csúcsai egy klikkbe (teljes részgráfba) és egy független csúcshalmazba particionálhatók. Elsőként Földes and Hammer (1977a, 1977b) tanulmányozta őket, tőlük függetlenül Tyshkevich and Chernyak (1979) is bevezette a fogalmat.[1]
Egy split gráfnak lehet egynél több lehetséges klikkre és független halmazra való particionálása is; például az a–b–cútgráf egy split gráf, melynek csúcsai háromféleképpen particionálhatók:
A definíció alapján a split gráfok nyilvánvalóan zártak a komplementerképzés műveletére nézve.[3] Egy másik karakterizáció szerint a split gráfok azok a merev körű gráfok, melyek komplementere is merev körű.[4] Ahogy a merev körű gráfok a fák al-fáinak metszetgráfjai, ugyanígy a split gráfok csillaggráfok al-csillagjainak metszetgráfjai.[5]Csaknem minden merev körű gráf splitgráf; ahogy n tart végtelenhez, az n-csúcsú merev körű gráfok között a split gráfok aránya egyhez tart.[6]
Mivel a merev körű gráfok perfektek, ezért a split gráfok is azok. A dupla split gráfok[7] családjának tagjait split gráfokból lehet előállítani minden csúcs megduplázásával (így a klikk antipárosítást feszít ki, a független csúcshalmaz pedig párosítást); a dupla split gráfok a perfekt gráfok öt alaposztályának egyike, melyekből az összes többi perfekt gráf előállítható, ahogy az megjelenik (Chudnovsky et al. 2006) erős perfektgráf-tétel-bizonyításában.
Ha egy gráf egyszerre split és intervallumgráf, akkor komplementere egyszerre split és összehasonlíthatósági gráf, ugyanez igaz megfordítva. A split összehasonlíthatósági gráfok és így a split intervallumgráfok ezért jellemezhetőek három tiltott feszített részgráfjukkal.[8] A split kográfok pontosan megegyeznek a küszöbgráfokkal, a split permutációgráfok pedig pontosan azok az intervallumgráfok, melyek komplementerei is intervallumgráfok.[9] A split gráfok komplementer kromatikus száma 2.
Algoritmikus problémák
Tekintsük a G split gráfot, melynek létezik egy C klikkbe és I független csúcshalmazba particionálása. Ekkor a split gráf minden maximális klikkje vagy C-vel egyezik meg, vagy egy I-beli csúcs szomszédságával. Ezért a split gráfokban könnyű feladat meghatározni a maximális klikket, illetve komplementer feladatként a maximális független halmazt. Tetszőleges split gráfban a következő három lehetőség valamelyikének igaznak kell lennie:[10]
Létezik olyan x csúcs I-ben, hogy C ∪ {x} teljes. Ebben az esetben C ∪ {x} egy maximális klikk, I pedig maximális független halmaz.
Létezik x csúcs C-ben, hogy I ∪ {x} független. Ebben az esetben I ∪ {x} maximális független halmaz és C maximális klikk.
C maximális klikk és I maximális független halmaz. Ebben az esetben G-nek a (C,I) klikkre és független halmazra felbontása egyedi, C a maximális klikk és I a maximális független halmaz.
Néhány optimalizálási probléma, ami általánosabb gráfcsaládokon NP-teljes – köztük a gráfszínezés – hasonlóan egyszerűsödik split gráfokat tekintve. A Hamilton-kör keresése továbbra is NP-teljes, még olyan split gráfokra is, melyek erősen merev körűek.[11] Ismert továbbá, hogy a minimális domináló csúcshalmaz problémája split gráfokra is NP-teljes.[12]
Fokszámsorozatok
A split gráfok figyelemre méltó sajátossága, hogy pusztán a gráf fokszámsorozata alapján felismerhetők. Legyen a G gráf fokszámsorozata d1 ≥ d2 ≥ ... ≥ dn, és m a legnagyobb i érték, amire di ≥ i − 1. Ekkor G pontosan akkor split gráf, ha
Ha ez az eset áll fenn, akkor a legnagyobb fokszámú m csúcs maximális klikket alkot G-ben, a maradék csúcsok pedig független csúcshalmazt.[13]
Split gráfok leszámlálása
(Royle 2000) megmutatta, hogy az n-csúcsú split gráfok és bizonyos Sperner-rendszerek között bijekció létesíthető. Ezt a tényt kihasználva meghatározta az n csúcsú (nem izomorf) split gráfok számát. Kis n értékekre, n = 1-től kezdve, ezek:
1, 2, 4, 9, 21, 56, 164, 557, 2223, 10766, 64956, 501696, ... (A048194 sorozat az OEIS-ben).
Ez a szócikk részben vagy egészben a Split graph című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Bender, E. A.; Richmond, L. B. & Wormald, N. C. (1985), "Almost all chordal graphs split", J. Austral. Math. Soc., A 38 (2): 214–221, DOI 10.1017/S1446788700023077.
Brandstädt, Andreas; Le, Van Bang & Spinrad, Jeremy (1999), Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, ISBN 0-89871-432-X.
Földes, Stéphane & Hammer, Peter Ladislaw (1977a), "Split graphs", Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), vol. XIX, Congressus Numerantium, Winnipeg: Utilitas Math., pp. 311–315.
Tyshkevich, Regina I. & Chernyak, A. A. (1979), "Canonical partition of a graph defined by the degrees of its vertices", Isv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk5: 14–26.
Tyshkevich, Regina I. & Chernyak, A. A. (1990), Matem. Zametki48 (6): 98–105, <http://mi.mathnet.ru/eng/mz3413>. Translated as "Yet another method of enumerating unmarked combinatorial objects" (1990), Mathematical notes of the Academy of Sciences of the USSR48 (6): 1239–1245, doi:10.1007/BF01240267.
Tyshkevich, Regina I.; Melnikow, O. I. & Kotov, V. M. (1981), "On graphs and degree sequences: the canonical decomposition", Kibernetika6: 5–8.
Voss, H.-J. (1985), "Note on a paper of McMorris and Shier", Commentationes Mathematicae Universitatis Carolinae26: 319–322.
Kapcsolódó irodalom
Martin Charles Golumbic, "Algorithmic Graph Theory and Perfect Graphs" c. könyvének egy teljes fejezete a split gráfokat tárgyalja.
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!