Système linéaire

Un système linéaire (le terme système étant pris au sens de l'automatique, à savoir un système dynamique) est un objet du monde matériel qui peut être décrit par des équations linéaires (équations linéaires différentielles ou aux différences), ou encore qui obéit au principe de superposition : toute combinaison linéaire des variables de ce système est encore une variable de ce système.

Les systèmes non linéaires sont plus difficiles à étudier que les systèmes linéaires. Néanmoins, en linéarisant (quand c'est possible) un système non linéaire autour d'un point d'équilibre ou d'une trajectoire, on obtient un système linéaire qui représente correctement le système non linéaire au voisinage de ce point d'équilibre ou de cette trajectoire [1]. La linéarisation d'un système non linéaire autour d'une trajectoire non réduite à un point d'équilibre engendre un système linéaire à coefficients variables (en fonction de temps), d'où l'importance qu'a pris ce type de systèmes et les études récentes qui lui ont été consacrées.

Souvent (mais pas toujours), on distingue parmi les variables d'un système S les variables d'entrée, rassemblées dans une colonne u, et les variables de sortie, rassemblées dans une colonne y ; le triplet est alors appelé un système commandé[2] ou encore une dynamique[3].

Historique

Les systèmes linéaires n'ont tout d'abord été étudiés que dans le cas stationnaire (également appelé « invariant ») dans le formalisme des fonctions de transfert. Cette approche est parvenue à sa pleine maturité avec la publication du célèbre livre de Bode à la fin de la seconde guerre mondiale (réédité depuis)[4]. Les travaux de Bellman[5], Pontryagin et ses collaborateurs[6] et surtout de Kalman[7],[8] ont conduit nombre d'automaticiens à privilégier la représentation d'état à partir des années 1960.

Kalman a fait une théorie complète des systèmes linéaires stationnaires sous forme d'état et a mis en évidence la perte d'information induite par le formalisme de transfert, à savoir les « modes cachés ». Sous l'impulsion de Wonham (de), les automaticiens se sont attachés à obtenir des représentations plus intrinsèques des systèmes linéaires que dans la formulation kalmanienne : c'est ainsi que s'est développée à partir de la seconde moitié des années 1970 l'approche géométrique[9] qui conserve néanmoins la structure de la représentation d'état.

Vers le milieu des années 1980, Jan Willems a mis l'accent sur le fait qu'un système linéaire stationnaire général devait se définir comme étant le noyau, dans une puissance d'un espace fonctionnel approprié, d'une matrice à éléments dans un anneau d'opérateurs différentiels à coefficients constant s : c'est l'approche dite « comportementale » (anglais : behavioral approach)[10],[11].

En 1990, à partir de ses travaux sur les systèmes non linéaires, Fliess a proposé une approche alternative suivant laquelle un système est un module de présentation finie sur un anneau d'opérateurs différentiels[3]. Au même moment, et de manière indépendante, Oberst[12] établissait le lien entre les deux approches (la première qui met l'accent sur les solutions, la seconde sur les équations) grâce à des notions d'algèbre homologique. Ceci faisait disparaître la séparation qui existait encore entre la théorie des systèmes linéaires au sens de l'automatique, qui nous préoccupe ici, et la théorie des systèmes différentiels linéaires, telle que développée par Malgrange[13] à partir des idées de Grothendieck en géométrie algébrique[14]. Ces idées ont donné naissance par la suite à la théorie des D-modules sous l’impulsion de Satō (et de l'« école de Kyoto » qu'il a fondée, dont Masaki Kashiwara est aujourd'hui un représentant de premier plan[15]).

La conception moderne des systèmes linéaires a fait récemment l'objet d'une présentation systématique[16] ; l'étude des systèmes linéaires à coefficients variables en fonction du temps y occupe une place importante, et notamment la notion de pôle d'un tel système, avec la propriété de stabilité qui résulte de la position de ces pôles dans le plan complexe[17]. Cette généralisation ne pouvait être réalisée sans une utilisation des outils de l'analyse algébrique[18].

Représentation d'état

En automatique, un système linéaire de dimension finie est donné par la représentation d'état suivante :

avec :

 : un vecteur colonne qui représente les variables d'état ;
 : un vecteur colonne qui représente les commandes ;
 : un vecteur colonne qui représente les sorties ;
 : la matrice d'état ;
 : la matrice de commande (ou matrice d'entrée) ;
 : la matrice d'observation (ou matrice de sortie) ;
 : la matrice d'action directe.

et où dénote ou suivant le contexte temps-continu ou temps-discret. Le cas stationnaire où les matrices ne dépendent pas du temps est dit linéaire temps-invariant, par opposition au cas instationnaire où les matrices dépendent du temps, et qui est dit linéaire temps-variant.

Systèmes linéaires en tant que conoyaux

Définition

Soit un anneau d'opérateurs différentiels, supposé intègre et admettant un corps de fractions, c'est-à-dire vérifiant la propriété d'Ore à gauche et à droite (tout anneau intègre noethérien à gauche et à droite vérifie cette condition[19]). On supposera que est un anneau différentiel et que est une -algèbre. Si et ƒ est un élément d'un -module (module des fonctions indéfiniment dérivables, ou des distributions, ou des hyperfonctions, ou des germes de fonctions analytiques au voisinage de +∞, etc., suivant la nature des éléments de ), on a d'après la règle de Leibniz

est la dérivation de , dont est une extension. Comme ceci est vrai pour tout on a la relation de commutation

.

Un exemple typique est celui où . L'anneau est alors (isomorphe à) la première algèbre de Weyl qui est un anneau de Dedekind non commutatif et simple[19].

Un système linéaire défini sur est défini par une équation de la forme

et où est une colonne de éléments qui engendrent un - module à gauche de présentation finie (ce qu'on écrira ). De manière précise, on peut considérer la multiplication à droite par , notée , comme un opérateur de dans . Si est l'image de cet opérateur, est le quotient de annulé par les éléments de , à savoir le conoyau

.

On notera que toute combinaison linéaire d'un nombre fini de variables de et de leurs dérivées d'ordre quelconque (mais fini) est encore un élément de , ce qu'on peut prendre pour définition même de la linéarité. D'autre part, contrairement à l'équation qui le définit « par générateurs et relations », est un objet intrinsèque, dans le sens où il ne dépend pas de l'ordre dans lequel sont écrites les équations scalaires, ni de l'ordre dans lequel sont prises les variables, et plus généralement du choix des générateurs. On peut donc, au plan mathématique, identifier le système linéaire avec le module .

Commandabilité

Le système est commandable s'il ne contient pas de variable sur laquelle aucune action n'est possible. Une telle variable se caractérise par le fait qu'elle satisfait une équation différentielle autonome, c'est-à-dire qu'elle n'est pas libre (ou qu'elle est liée). Un module qui ne contient aucune variable liée est (par définition) un module sans torsion. Cette observation a conduit Oberst à poser qu'un système est commandable s'il est un module sans torsion[12]. Pour Fliess, qui suppose que est un corps différentiel, se trouve être un anneau principal. Dans ce cas, un module de type fini est sans torsion si, et seulement si, il est libre, et il a donc défini un système commandable comme étant un module libre[3].

Dans le cas considéré par Fliess[3], tout système admet une représentation d'état, et la définition de la commandabilité comme étant la liberté du module équivaut à la définition kalmanienne classique[8] (voir l'article Représentation d'état).

On notera que la commandabilité est définie ci-dessus sans qu'il ait été besoin de spécifier un choix des variables de commandes. Cette indépendance de la notion de commandabilité par rapport à celle de variable de commande a été observée en premier lieu par Willems[11].

Systèmes linéaires en tant que noyaux

Soit un anneau d'opérateurs différentiels vérifiant les mêmes conditions que ci-dessus, par exemple la première algèbre de Weyl pour fixer les idées. Soit un -module à gauche, par exemple l'espace des distributions sur la droite réelle. Notons

.

Dans son « approche comportementale », Willems[11] définit le système associé à la matrice comme étant ce noyau. Il nous reste à établir la connexion qui existe entre celui-ci et le conoyau ci-dessus.

On peut identifier les éléments de avec les homomorphismes de dans . Alors l'ensemble des homomorphismes de s'identifient avec les homomorphismes de dans qui s'annulent sur (voir l'article Module injectif). Par conséquent, on passe du conoyau au noyau ci-dessus par le foncteur contravariant représentable .

Ce foncteur est additif et exact à gauche de la catégorie des -modules à gauche dans celle des -espaces vectoriels. Ce foncteur est injectif (et permet donc de remonter du noyau au conoyau, ou par abus de langage des solutions aux équations) si, et seulement si est un « cogénérateur » (notion qui est classique en algèbre homologique). Il est bijectif et dualisant entre la catégorie des -modules à gauche et la catégorie image si, et seulement si est un « cogénérateur injectif ». C'est la situation la plus favorable.

Lorsque , les -modules suivants sont des cogénérateurs injectifs[12] :

(a) l'espace des combinaisons linéaires d'exponentielles-polynômes, ,
(b) l'espace des fonctions indéfiniment dérivables sur la droite réelle,
(c) l'espace des distributions sur la droite réelle.

Lorsque , l'espace des germes des fonctions analytiques dans un intervalle de la forme de la droite réelle est un cogénérateur injectif[16].

Lorsque , on ne connaît pas de cogénérateur injectif qui soit un espace rencontré en analyse. La situation est différente lorsque désigne l'espace des fonctions analytiques sur la droite réelle. Dans ce cas, l'espace des hyperfonctions est un cogénérateur injectif[20]. Cet exemple montre que pour un type de système linéaire donné, on doit mettre en jeu à la fois l'anneau et l'espace appropriés. C'est le principe même de l’analyse algébrique.

Dans les exemples ci-dessus l'approche par conoyaux (« équations ») et celle par noyaux (« solutions ») sont équivalentes.

Notes et références

Notes

  1. Dans certains problèmes où interviennent des systèmes non linéaires du second ordre, il peut être commode d'utiliser la « linéarisation équivalente », parfois dite « optimale ».
  2. Bourlès 2010
  3. a b c et d Fliess 1990
  4. Bode 1975
  5. Bellman 1957
  6. Pontryagin et al. 1962
  7. Kalman 1960
  8. a et b Kalman 1963
  9. Wonham 1985
  10. Willems 1986-87
  11. a b et c Willems 1991
  12. a b et c Oberst 1990
  13. Malgrange 1962-1963
  14. Grothendieck et Dieudonné 1971
  15. Kashiwara 1970
  16. a et b Bourlès et Marinescu 2011
  17. Marinescu et Bourlès 2009
  18. Il s'agit d'une discipline qui vise à résoudre des problèmes d'analyse en utilisant des structures algébriques (théorie des modules de présentation finie sur un anneau d'opérateurs, par exemple différentiels) et leur « dualisation » (celle-ci étant la base de l'algèbre homologique).
  19. a et b McConnell et Robson 2001
  20. Fröhler et Oberst 1998

Références

Voir aussi

Read other articles:

Ghost Town in Ontario, CanadaBurchell LakeGhost TownBurchell LakeCoordinates: 48°36′11″N 90°35′31″W / 48.603°N 90.592°W / 48.603; -90.592Country CanadaProvince OntarioCountyThunder BaySettled1961Abandoned1967Population • Total0Time zoneUTC−5 (EST) • Summer (DST)UTC−4 (EDT) Burchell Lake is a ghost town in the Canadian province of Ontario, located behind a locked gate at the southern end of Highway 802 in the Thunder Bay...

 

Supercopa da Espanha de 2019-20XXXVI Supercopa da Espanha Supercopa de España 2019-20XXXVI Supercopa de España Supercopa da Espanha de 2019–20 Dados Participantes 4 Organização RFEF Anfitrião Arábia Saudita Período 8 – 12 de janeiro de 2020 Campeão Real Madrid Vice-campeão Atlético de Madrid ◄◄ 2018 2020–21 ►► A Supercopa da Espanha de 2019–20 é a 36ª edição da Supercopa da Espanha, um torneio anual de futebol organizado pela Real Federação Espanhola de Futebol...

 

Đây là một trận đánh trong cuộc Chiến tranh thế giới thứ nhất, diễn ra vào năm 1914. Liệu bạn đang tìm Trận Mülhausen (1674) ? Trận chiến MülhausenMột phần của Mặt trận phía Tây trong Chiến tranh thế giới thứ nhấtLực lượng Thiết Kỵ binh Pháp lên đường ra trận, Paris, vào tháng 8 năm 1914.Thời gian7 – 10 tháng 8 năm 1914[1]Địa điểmXung quanh Mülhausen (Mulhouse) tại AlsaceKết quả Qu...

هيكل (أحياء)   تفاصيل يتكون من عظم  نوع من نظام أحيائي،  وكيان تشريحي معين  [لغات أخرى]‏  جزء من حيوانات  UBERON ID 0004288  ن.ف.م.ط. D012863  [عدل في ويكي بيانات ] تعديل مصدري - تعديل     لمعانٍ أخرى، طالع هيكل (توضيح). الهيكل العظمي لحوت أزرق الهيكل العظم...

 

BereaGeneral informationLocation30 Depot StreetBerea, Ohio 44017Coordinates41°22′52″N 81°51′16″W / 41.3810°N 81.8545°W / 41.3810; -81.8545Operated byCleveland, Columbus, Cincinnati and Indianapolis Railway (1876 – 1889)Lake Shore & Michigan Southern Railway (1876 – 1914)Cleveland, Cincinnati, Chicago and St. Louis Railway (1889 – 1930)New York Central (1914 – 1954)Tracks5 (current)Other informationWebsitehttps://www.bereadepot.co...

 

RayleneRaylene, 2011LahirStacey Bernstein[1]12 Februari 1977 (umur 46)[2]Glendora, California, US[3]Nama lainAlexis Fontaine[2]Tinggi5 ft 7 in (1,70 m)[2]Berat131 pon (59 kg; 9,4 st)[2]Suami/istriBrad Hirsch (divorced)Anak1 son Raylene (nama lahir Stacey Bernstein) (lahir 12 Februari 1977) adalah seorang mantan aktris pornografi asal Amerika Serikat.[4] Referensi ^ Gila Morgan (2006-10-22). Stacey ...

Sjarifuddin BaharsjahMenteri Pertanian Indonesia ke-20Masa jabatan16 Maret 1993 – 14 Maret 1998PresidenSoehartoPendahuluWardojoPenggantiJustika Baharsjah Informasi pribadiLahir(1932-05-16)16 Mei 1932Sindanglaut, Lemahabang, Keresidenan Cirebon, Hindia BelandaMeninggal15 Januari 2021(2021-01-15) (umur 88)Jakarta, IndonesiaKebangsaanIndonesiaSuami/istriJustika Baharsjah ​(m. 1962)​HubunganLeila Chairani Budiman (saudara)Anak2Orang tuaSutan Bahars...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2021) سكن مدينة مادبا العديد من القبائل العربية منطقة شرقي الأردن قبل الإسلام، ومنهم: الغساسنة في منطقة حوران، وقضاعة في منطقة البلقاء، وجنوب شرقي الأردن، وجذام ول...

 

Catalase-positive bacterium This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bacillus subtilis – news · newspapers · books · scholar · JSTOR (November 2022)...

Ancient kingdom of Kathmandu valley, Nepal For the clan that lasted until the 4th century BCE, see Licchavi (tribe). Licchavic. 400 CE–c. 750 CE Coinage of Licchavi king Amshuverma (605–621 CE). Obverse: winged lion, with Brahmi legend Śri Amśurvarma Lord Amshurvarma. Reverse: Bull with Brahmi legend Kāmadēhi (Incarnation of Kāma).[1] South Asia600 CEMORISPANDYASLICCHAVISCHOLASZHANGZHUNGCHERASSAMATATASGAUDAKAMARUPAVISHNU-KUNDINASPALLAVASALUPASNEZAKSALCHONSKALINGASPANDUVAMSHIS...

 

Iranian tomb complex erected in honor of the Persian poet Ferdowsi Tomb of Ferdowsiآرامگاه فردوسیGeneral informationArchitectural styleIranian architectureTown or cityTus, MashhadCountryIranCompleted1934Design and constructionArchitect(s)Hooshang Seyhoun The Tomb of Ferdowsi (Persian: آرامگاه فردوسی, Ârâmgâh-e Ferdowsi) is a tomb complex composed of a white marble base, and a decorative edifice erected in honor of the Persian poet Ferdowsi located in Tus, Iran, in...

 

Australian equestrian Sharon Jarvis2016 Australian Paralympic team portraitPersonal informationBorn (1978-10-31) 31 October 1978 (age 45)SportCountryAustraliaSportPara-equestrian Medal record Equestrian World Equestrian Games 2010 Kentucky Individual Test Grade III 2010 Kentucky Freestyle Test Grade III Sharon Jarvis (born 31 October 1978) is an Australian para-equestrian. She represented Australia at the three Summer Paralympics - 2008 Beijing, 2016 Rio and 2020 Tokyo .[1] Perso...

American college insurance fraternity This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Gamma Iota Sigma – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) Gamma Iota SigmaΓΙΣFoundedApril 16, 1966; 57 years ago (April 16, 1966)Ohio State University, (Columbus, Ohio)TypeProfession...

 

As I AmLagu oleh Dream Theaterdari album Train of ThoughtDirilis29 Oktober 2003FormatDigitalDirekamMaret–September 2003GenreProgressive metalDurasi7:47LabelElektraPenciptaLirik-John Petrucci musik-Dream TheaterProduserMike Portnoy dan John Petrucci As I Am adalah lagu pertama dan singel utama pada album studio Dream Theater ke tujuh Train of Thought. Lagu ini dimulai dengan akhiran akord orkestra dari album sebelumnya, Six Degrees of Inner Turbulence sebagai bagian dari siklus Meta album.&#...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Uma Aventura na Casa AssombradaSutradara Carlos Coelho da Silva ProduserDitulis olehBerdasarkanUma Aventura na Casa Assombradaoleh Ana Maria Magalhães dan Isabel AlçadaPemeranSara Salgado Francisco Areosa Margarida Martinho Mariana Martinho César B...

Marvel Comics fictional character This article describes a work or element of fiction in a primarily in-universe style. Please help rewrite it to explain the fiction more clearly and provide non-fictional perspective. (October 2018) (Learn how and when to remove this template message) Comics character SunspotRoberto da Costa as seen in The New Avengers (vol. 4) #14 (July 2016).Art by Paco Medina.Publication informationPublisherMarvel ComicsFirst appearanceMarvel Graphic Novel: The New Mutants...

 

Baronía de San Petrillo Corona de barónPrimer titular Rodrigo de Borja Llanzol de Romaní y OliveraConcesión Felipe IV1627Actual titular José Alfonso Caruana Velázquez[editar datos en Wikidata] La Baronía de San Petrillo es un título nobiliario español que tiene su origen en el vínculo creado, previa Real Facultad, del rey Felipe IV en 1627, a favor de Rodrigo de Borja Llanzol de Romaní y Olivera. El Título fue rehabilitado en 1919 por el rey Alfonso XIII, a favor de Mar...

 

Stefano Chiodi Chiodi alla Lazio nella stagione 1982-1983 Nazionalità  Italia Altezza 178 cm Peso 72 kg Calcio Ruolo Attaccante, centrocampista Termine carriera 1988 Carriera Giovanili 19??-1972 Progresso1972-1974 Bologna Squadre di club1 1974-1975→  Teramo29 (8)1975-1978 Bologna72 (18)1978-1980 Milan50 (14)1980-1981 Lazio28 (6)1981-1982→  Bologna15 (1)1982-1983 Lazio10 (0)1983-1984 Prato30 (10)1984-1985 Campania17 (4)[1]1986...

  Epidendrum Epidendrum nocturnum(especie tipo)TaxonomíaReino: PlantaeDivisión: MagnoliophytaClase: LiliopsidaOrden: AsparagalesFamilia: OrchidaceaeSubfamilia: EpidendroideaeTribu: EpidendreaeSubtribu: LaeliinaeAlianza: EpidendrumGénero: EpidendrumL., 1763Especies Listado completo de especies de Epidendrum Sinonimia Phadrosanthus Neck., Elem. Bot. 3: 153 (1790), opus utique oppr. Amphiglottis Salisb., Trans. Hort. Soc. London 1: 294 (1812). Auliza Salisb., Trans. Hort. Soc. London 1: ...

 

Type of armor Han dynasty lamellar armour Chinese armour was predominantly lamellar from the Warring States period (481 BC–221 BC) onward, prior to which animal parts such as rhinoceros hide, rawhide, and turtle shells were used for protection. Lamellar armour was supplemented by scale armour since the Warring States period or earlier. Partial plate armour was popular from the Eastern and Southern dynasties (420–589), and mail and mountain pattern armour from the Tang dynasty (618–907)....

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!