Le phénomène fut observé par Jerry R. Ehman, astrophysicien qui travaillait avec le radiotélescope dans le cadre d'un projet SETI. Stupéfait de voir à quel point le signal observé correspondait à la signature attendue pour un signal interstellaire, Ehman a entouré au stylo rouge le passage correspondant sur le relevé des mesures effectuées par le radiotélescope, et a écrit dans la marge à côté le commentaire « Wow! », interjection de surprise ou d'admiration en anglais, proche de « Ouah ! » en français. Ce commentaire est devenu le nom du signal[1].
Ce signal n'a toujours pas d'explication faisant consensus.
Localisation du signal
Déterminer un emplacement précis du signal dans le ciel est compliqué, du fait que le télescope Big Ear a utilisé deux cornets d'alimentation pour rechercher des signaux, chacun pointant vers une direction légèrement différente. Le signal n'a été détecté que dans un seul de ces deux cornets et les données ont été traitées de telle façon qu'il est impossible de déterminer dans lequel des deux cornets le signal est entré. Il y a donc deux valeurs d'ascension droite possibles.
Discussion
On ne connaît ni la nature ni l'origine du signal et, a fortiori, on ignore s'il codait quelque chose. Supposer qu'il codait quelque chose équivaut à postuler qu'il avait pour origine une civilisation extraterrestre, ce qui n'est pas prouvé à ce jour.
C'est précisément la fréquence sur laquelle on s'attend à recevoir d'éventuels signaux de civilisations extraterrestres, car la poussière interstellaire est transparente à cette longueur d'onde et c'est la raie d'émission naturelle de l'élément le plus abondant de l'univers, l'hydrogène, de sorte que l'attention des êtres pensants est attirée sur cette bande, en émission comme en réception[3].
C'est d'ailleurs la fréquence choisie pour émettre le message d'Arecibo, un signal d'un projet SETI vers l'amas globulaire M13 en .
Cette fréquence n'est utilisée par aucun émetteur artificiel. Un accord international existe pour bannir cette fréquence de tout usage civil ou militaire ;
il venait d'une direction très précise du ciel, la durée de 72 secondes correspondant au passage d'un « lobe » de sensibilité de l'antenne sur ce point ;
lors du passage du second lobe de sensibilité de l'antenne quelques minutes plus tard, le signal avait disparu. Cela suggère une origine dans l'espace, en orbite ou plus loin ;
il n'y a aucun objet céleste notable connu dans les zones d'émission du signal (sauf deux petites comètes qui sont à la base de l'hypothèse cométaire).
Il est difficile de trouver une explication naturelle à l'ensemble de ces phénomènes, et notamment à l'absence de signal au second lobe et au spectre étroit. Une réflexion d'émetteurs radios terrestres est a priori exclue, car la fréquence ne correspond pas à des émetteurs terrestres et ces réflexions ne pourraient pas renvoyer l'énergie mesurée.
L'hypothèse cométaire, développée dans les années , n'est plus considérée comme plausible et il n'y a toujours pas de consensus établi concernant l'interprétation de ce phénomène[4].
En , dans un article non encore évalué par les pairs[5], une équipe de l'observatoire d'Arecibo suppose que le signal « Wow! » a été provoqué par un événement astrophysique rare : l'illumination soudaine d'un nuage moléculaire froid déclenchée par une puissante radiosource[6]. Cette interprétation ne fait pas non plus consensus[7].
Durée du signal
Au moment de l'observation, le radiotélescope n'est réglable qu'en fonction de l'altitude (ou de la hauteur au-dessus de l'horizon), et utilise la rotation de la Terre pour balayer le ciel. Compte tenu de la vitesse de rotation de la Terre et de la largeur de la fenêtre d'observation du télescope, le radiotélescope ne peut observer n'importe quel point donné que pendant 72 secondes[8]. Un signal extraterrestre continu ne pouvait donc être enregistré que pendant exactement 72 secondes.
De plus, la sensibilité du radiotélescope est maximale au centre de sa fenêtre d'observation. Par conséquent, si le signal observé est extraterrestre, l'intensité mesurée devrait afficher une augmentation progressive pendant les 36 premières secondes, à mesure que la source entre dans la fenêtre d'observation, puis un pic au centre de la fenêtre d'observation, et enfin une diminution progressive pendant les 36 secondes suivantes, à mesure que la source en sort.
Toutes ces caractéristiques sont présentes dans le signal « Wow! », ce qui plaide pour une origine extraterrestre[9], car une interférence terrestre pourrait présenter n'importe quelle durée, pas spécifiquement 72 secondes, et l'intensité mesurée ne présenterait pas nécessairement une courbe en cloche[10].
Hypothèse cométaire
Début , le professeur Antonio Paris de la Washington Academy of Sciences a publié un article[11] où il indique avoir trouvé deux comètes (266P/Christensen et 335P/Gibbs) découvertes dans la dernière décennie, pouvant se trouver en face du radiotélescope le . Les comètes, émettant beaucoup d'hydrogène, pourraient expliquer l'existence de ce signal. Pour vérifier son hypothèse, il propose de braquer les radiotélescopes vers une de ces comètes à leur prochain passage dans la même région d’émission du signal « Wow! » pour comparer précisément les deux signaux. La campagne d'observation qu'il a menée entre et a effectivement relevé un signal similaire au signal « Wow! » généré par 266P/Christensen[12]. Selon cette étude, la comète émet bel et bien à 1 420 MHz, avec un pic similaire à celui du signal « Wow! », cependant avec un rapport signal sur bruit de 4,76 sigma, alors que celui du signal de était de plus de 30 sigma. Les auteurs estiment que la différence tient au diamètre supérieur du Big Ear (52 m de diamètre contre 10 m pour les observations de ), et au fait que la comète a pu perdre de la masse depuis [12].
De plus, les comètes se déplaçant lentement dans le ciel, le second lobe de sensibilité aurait détecté le signal, ainsi que 24 heures plus tard ce qui n'a pas été le cas[14].
Enfin, la position supposée de 266P/Christensen lors de l'émission du signal « Wow! » est également remise en cause, et aurait pu différer de l'emplacement de l'émission du signal en [13].
Code du radiotélescope
Chacune des 50 premières colonnes de la feuille montre les valeurs successives d'intensité reçue par le radiotélescope Big Ear, dans chaque canal (10 kHz), avec un intervalle de 12 secondes successives. Afin d'économiser l'espace sur la feuille, Bob Dixon et Jerry Ehman ont décidé d'utiliser une méthode codée qui ne donnerait des résultats qu'en caractères alphanumériques pour chaque intensité. Leur ordinateur, un IBM 1130[15], était programmé pour garder une mise à jour constante pour chaque canal. L'intensité finale était alors divisée en valeur RMS pour obtenir une échelle. Enfin, ils décidèrent de ne baser que la partie entière de cette intensité échelonnée. La valeur tronquée du 0 était représentée par un blanc (espace). Pour les échelles d'intensité de 10 à 35 inclus, ils utilisèrent les lettres capitales de l'alphabet. Ainsi, la valeur 10 était imprimée comme étant « A », 11 étant « B », etc. Si l'échelle d'intensité dépassait les 36,0, le programme reprenait simplement à zéro. La valeur « U » est la valeur la plus forte jamais vue par ce radiotélescope. Dixon et Ehman ne pensent pas que l'intensité du signal puisse être dépassée[16].
Sachant que tous les autres chiffres imprimés ne dépassaient pas la valeur d'intensité de 2, et en utilisant la méthode ci-dessus, on se rend compte alors que l'intensité du signal est exceptionnelle :
6
gamme [6 ; 7[
E
gamme [14 ; 15[
Q
gamme [26 ; 27[
U
gamme [30 ; 31[
J
gamme [19 ; 20[
5
gamme [5 ; 6[
Réponse
En , pour le 35e anniversaire du signal « Wow! », le radiotélescope d'Arecibo a envoyé une réponse de l'humanité, contenant 10 000 messages Twitter, dans la direction d'où provenait le signal[17],[18]. Pour cette réponse, les scientifiques d'Arecibo ont tenté d'augmenter les chances qu'une vie intelligente reçoive et décode les vidéos de célébrités et les tweets en y attachant une séquence en en-tête, répétée pour chaque message, qui permettrait au destinataire de savoir que les messages sont intentionnels et proviennent d'une autre forme de vie intelligente, l'humanité[18].
Postérité
En , dans le roman 172 heures sur la Lune de Johan Harstad, le signal aurait été émis par la Lune[19].
En , le code 6EQUJ5 apparaît dans le jeu vidéo Grand Theft Auto V. Il est écrit sur le sol à Sandy Shores à l'endroit du monument hippie dédié aux extraterrestres[20].
En , dans le roman Signe de vie de José Rodrigues dos Santos, un signal est à nouveau détecté dans la même zone[21].
En , dans le 4e épisode de la première saison de la série française OVNI(s), Rémy Bidaut (Quentin Dolmaire) dit à Didier Mathure (Melvil Poupaud) qu'un radiotélescope a capté pendant 72 secondes un signal émis en provenance de la constellation du Sagittaire. Il explique aussi l'origine du surnom du signal « Wow! », mais mentionne une bande passante de 10 MHz, et non de 10 kHz, et qu'il a été capté au Colorado, et non dans l'Ohio[réf. nécessaire].
En , dans le second épisode de la première saison de la série de science-fiction Le Problème à trois corps, il est fait référence au signal « Wow! »[22].
(en) Michael Brooks, chap. 7 « The Wow! Signal : Has ET already been in touch? », dans 13 Things that Don't Make Sense : The Most Baffling Scientific Mysteries of Our Time, Doubleday, , 240 p. (ISBN978-0-385-52068-3), p. 97–109 [lire en ligne]