Régime républicain en France
|
Read other articles:
село Боднарівка Кладка через Збруч біля БоднарівкиКладка через Збруч біля Боднарівки Країна Україна Область Тернопільська область Район Чортківський район Громада Гусятинська селищна громада Облікова картка Боднарівка Основні дані Засноване 1532 Населення 111[...
City in Dante's Inferno Lower Hell, inside the walls of Dis, in an illustration by Stradanus. There is a drop from the sixth circle to the three rings of the seventh circle, then again to the ten rings of the eighth circle, and, at the bottom, to the icy ninth circle. In Dante Alighieri's The Divine Comedy, the City of Dis (Italian: Dite Italian pronunciation: [ˈdiːte]) encompasses the sixth through the ninth circles of Hell.[1] Moated by the river Styx, the fortified city e...
República de Amalfi ← 839 — 1073 → Bandeira Escudo Bandeira Escudo Amalfi ca. 1000 Região Península Itálica Capital Amalfi Países atuais Itália Línguas oficiais Grego Latim Religião Cristianismo Moeda Soldo[1] Tari[1] Prefeito (até 958) Duque • 839-? Pedro • 1073 João III Período histórico Idade Média • 839 Prefeito eleito • 1073 Conquista por Roberto Guiscardo República de Amalfi ou Ducado de Amalfi foi...
سفارة السودان في الولايات المتحدة السودان الولايات المتحدة الإحداثيات 38°54′40″N 77°02′58″W / 38.9111°N 77.0494°W / 38.9111; -77.0494 البلد الولايات المتحدة المكان واشنطن تعديل مصدري - تعديل سفارة السودان في الولايات المتحدة هي التمثيلية الرسمية وسفارة السودان ف
Tamaricaceae типовий вид типового роду, Tamarix gallica Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Покритонасінні (Angiosperms) Клада: Евдикоти (Eudicots) Порядок: Гвоздикоцвіті (Caryophyllales) Родина: Тамарискові (Tamaricaceae)Link Роди Hololachna Myricaria Myrtama Reaumuria Tamaricaria Tama...
Italian rabbi and kabbalist Not to be confused with Samuel David Luzzatto. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Moshe Chaim Luzzatto – news · newspapers · books · scholar · JSTOR (April 2008) (Learn how and when to remove this template message) RaMHaLרמחלMoshe Chaim LuzzattoWall paintin...
Village in Eastern, North MacedoniaZletovo ЗлетовоVillagePanoramic view of the village ZletovoZletovoLocation within North MacedoniaCoordinates: 41°59′N 22°14′E / 41.983°N 22.233°E / 41.983; 22.233Country North MacedoniaRegion EasternMunicipality ProbištipPopulation (2002) • Total2,477Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Website. Zletovo (Macedonian: Злетово) is a village in the municipality of Probišt...
Cet article est une ébauche concernant l’écologie scientifique et le Chili. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Agostini. Parc national Alberto de AgostiniGlacier Romanche sur le canal BeagleGéographiePays ChiliRégion Magallanes et l'Antarctique chilienProvince Antarctique chilienProvince Tierra del FuegoProvince MagallanesCoordonnées 54° 46′ 01″...
The Kerala Sahitya Akademi Award for Drama is an award given every year by the Kerala Sahitya Akademi (Kerala Literary Academy) to Malayalam writers for writing a drama of literary merit. It is one of the twelve categories of the Kerala Sahitya Akademi Award. [1][2] Awardees Year Book Author Image 1958 Azhimukhathekku N. Krishna Pillai 1959 Mudiyanaya Puthran Thoppil Bhasi 1960 Puthiya Akasam Puthiya Bhumi Thoppil Bhasi 1961 Iblisukalude Naattil N. P. Chellappan Nair 196...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) كريستوفر مان معلومات شخصية الميلاد سنة 1965 (العمر 57–58 سنة) مواطنة المملكة المتحدة الحياة العملية المهنة مهندس، وملحن اللغات الإنجليزية تع...
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Hans Mommsen (Begriffsklärung) aufgeführt. Hans Mommsen (2013) Hans Mommsen (* 5. November 1930 in Marburg; † 5. November 2015 in Tutzing[1]) war ein deutscher Historiker. Er gilt als einer der bedeutendsten deutschen Zeithistoriker nach dem Zweiten Weltkrieg. Inhaltsverzeichnis 1 Leben 2 Werk 3 Ehrungen 4 Schriften (Auswahl) 5 Literatur 6 Weblinks 7 Einzelnachweise Leben Hans Mommsens Urgroßvater war der Al...
omBC 2901-2908 Motorrijtuig omBC 2901 te Maarn; 1937. Type DM37 Aantal 8 Serie 2901-2908, later 101-103 Fabrikant Werkspoor, Stork, Thomassen Vervoerder Nederlandse Spoorwegen Bouwjaar 1937 Uit dienst 1944, 1945, 1950, 1961 Asindeling (1A)' (A1)' Assen 4 Spoorwijdte 1435 mm (normaalspoor) Massa 53 ton Lengte over buffers 26.700 mm Maximumsnelheid 105 km/h Dienstsnelheid 105 km/h Aantal zitplaatsen 3e klasse: 152e klasse: 56 Aantal staanplaatsen 3e klasse: 82e klasse: 8 Techniek Voed...
Three wavefunction solutions to the time-dependent Schrödinger equation for an electron in a harmonic oscillator potential. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the particle at a certain position. The top row is an energy eigenstate with low energy, the middle row is an energy eigenstate with higher energy, and the bottom is a quantum superposition mixing those two states. The bottom-right shows that the electron is moving...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2018) (Learn how and when to remove this template message) This article has an unclear citation style. Th...
Karl Ludwig d'ElsaBorn(1849-11-01)1 November 1849Dresden, Kingdom of SaxonyDied20 July 1922(1922-07-20) (aged 72)Tannenfeld bei Nöbdenitz, Löbichau, Thuringia, GermanyAllegiance German EmpireService/branch Imperial German ArmyYears of service1870–1920Rank GeneraloberstCommands held 13th (2nd Royal Saxon) Jäger Bataillon 101st (2nd Royal Saxon) Grenadiers Emperor William, King of Prussia 48th (4th Royal Saxon) Infantry Brigade 64th (6th Royal Saxon) Infantry Brigade 24th (2...
Private university in Madhya Pradesh Swami Vivekanand UniversityEstablished2012Locationkalyani, Madhya Pradesh, IndiaWebsitewww.svnuniversity.co.in 23°48′45″N 78°48′32″E / 23.8126018°N 78.8089975°E / 23.8126018; 78.8089975 Swami Vivekananda University or Sri Vivekanand Niji University (SVN) is a private university located in Sagar, Madhya Pradesh, India. The university was established in 2011 and it is approved by the University Grants Commission.[1]...
Queen of the DamnedPoster promoSutradara Michael Rymer Produser Jorge Saralegui Ditulis olehScott Abbott Michael PetroniAnne Rice (Novel)PemeranAaliyahStuart TownsendMarguerite MoreauPaul McGannVincent PerezLena OlinPenata musikRichard GibbsJonathan DavisSinematograferIan BakerPenyuntingDany CooperPerusahaanproduksiVillage Roadshow PicturesDistributorAmerika Utara/Jepang:Warner Bros. PicturesInternasional:Village Roadshow LimitedTanggal rilis22 Februari 2002 (2002-02-22)Durasi101 m...
2003 single by Brooks & DunnYou Can't Take the Honky Tonk Out of the GirlSingle by Brooks & Dunnfrom the album Red Dirt Road ReleasedSeptember 15, 2003Recorded2003GenreCountryLength3:41LabelArista NashvilleSongwriter(s)Bob DiPieroBart AllmandProducer(s)Kix BrooksRonnie DunnMark WrightBrooks & Dunn singles chronology Red Dirt Road (2003) You Can't Take the Honky Tonk Out of the Girl (2003) That's What She Gets for Loving Me (2004) You Can't Take the Honky Tonk Out of the Girl is a ...
Salvia oppositiflora Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudicots Ordo: Lamiales Famili: Lamiaceae Genus: Salvia Spesies: Salvia oppositiflora Nama binomial Salvia oppositifloraRuiz & Pav. Salvia oppositiflora adalah spesies tumbuhan yang tergolong ke dalam famili Lamiaceae. Spesies ini juga merupakan bagian dari ordo Lamiales. Spesies Salvia oppositiflora sendiri merupakan bagian dari genus Salvia.[1] Nama ilmiah dari spesies ini pert...
A geometric separator is a line (or another shape) that partitions a collection of geometric shapes into two subsets, such that proportion of shapes in each subset is bounded, and the number of shapes that do not belong to any subset (i.e. the shapes intersected by the separator itself) is small. When a geometric separator exists, it can be used for building divide-and-conquer algorithms for solving various problems in computational geometry. Separators that are lines General question In 1979...