La liste des vols de SpaceX recense les tirs effectués et planifiés des différentes fusées de la société SpaceX.
Falcon 1 était un lanceur léger entièrement fabriqué par la société américaine SpaceX. Il pouvait être réutilisable et capable de placer 670 kg en orbite basse. Cinq lancements ont eu lieu entre 2006 et 2009 dont trois premier échecs. Le quatrième a été une réussite avec a son bord un faux satellite.Le cinquième vol en 2009 a permis la mise en orbite d'un satellite commercial. Une nouvelle version plus performante, le Falcon 1E, a été en projet puis abandonnée pour laisser place au Falcon 9. Le Falcon 1 utilisait des composants entièrement conçus par SpaceX, contrairement aux autres sociétés privées.
Falcon 9 a effectué son premier vol en 2010 dans la version 1.0. Depuis deux nouvelles versions ont été développées 1.1 puis 1.1 Full Thrust. Cette dernière version est en 2017 la seule utilisée. Elle est déclinée en deux variantes : avec premier étage réutilisable ou non.
Falcon Heavy est un lanceur lourd développé par SpaceX. Il peut placer 63,8 tonnes en orbite basse et 26,7 tonnes en orbite de transfert géostationnaire. Il réutilise les deux étages de la fusée Falcon 9 v1.1 auxquels sont accolés deux propulseurs d'appoint constitués par les premiers étages de cette même fusée. Le lanceur est conçu de manière à permettre la récupération du premier étage et des deux propulseurs d'appoint toutefois au prix d'une forte réduction de la charge utile. Initialement prévu en 2013, le premier vol a été maintes fois repoussé en raison surtout d'une mise au point plus longue que prévu d'une Falcon 9 suffisamment puissante et récupérable. Après un test d'allumage statique réalisé le le vol inaugural a eu lieu le depuis le pas de tir 39A du centre spatial Kennedy.
Le , SpaceX devient la première entreprise privée à placer sur orbite un vaisseau capable d'emporter des astronautes dans l'espace. Elle transport des astronautes pour la première fois le 30 mai 2020 dans le cadre de la mission Demo-2, devenant également la première entreprise privée à emporter des astronautes en orbite et vers la Station spatiale internationale. SpaceX obtient un autre record le 15 septembre 2021 alors qu'Inspiration4, qui séjourne en orbite durant 5 jours, devient la première mission entièrement privée en orbite.
Starship est le prochain lanceur de SpaceX actuellement en construction et sera la fusée la plus puissante de tous les temps. Du haut de ses 118 mètres et de ses 9 mètres de diamètre, elle aura une capacité de 150 tonnes de charge utile en orbite basse pour un coût inférieur a celui de la Falcon 9 du fait de la réutilisation totale de la fusée (alors que la Falcon 9 et Heavy ne réutilisent que les premiers étages).
Statistiques de lancement
Les cinq premiers lancements utilisent la version 1.0 du lanceur Falcon 9. Celle-ci est ensuite remplacée par le modèle 1.1. À partir du 20e lancement la version 1.1 est elle-même remplacée par la version « Full Thrust » (pleine poussée), abrégé en « FT » bénéficiant d'une poussée accrue de 30 %. Une variante permettant la récupération du premier étage est utilisée lorsque la charge utile lancée le permet. La récupération se fait d'abord à des fins de test par parachute puis sur des barges et enfin au sol. Une nouvelle version plus puissante de la fusée Falcon 9, la Falcon Heavy, a effectué son premier décollage le . Après neuf reports, un test au feu statique a eu lieu le , représentant la première fois que les vingt-sept moteurs de la fusée étaient allumés en même temps. SpaceX développe depuis 2019 un nouveau lanceur entièrement réutilisable qui n'est pas dérivé de la famille de lanceurs Falcon, le Starship. Plusieurs vols d'essais à haute altitude et tests de mise à feu statique ont lieu entre 2019 et 2023 dans le but de développer itérativement la conception des deux étages du lanceur. Le premier vol de test orbital du Starship est prévu pour 2023
Le premier étage est bien entré en combustion puis le passage au deuxième étage s'est produit, suivi de l'arrêt prématuré du moteur au bout de sept minutes pendant trente secondes. La fusée n'aura pas atteint son orbite prévu mais aura été jusqu'à 289 km d'altitude. Ces résultats auront permis la récupération de suffisamment de données pour réaliser des vols opérationnels.
RazakSAT a été conçu et construit par ATSB, pionnier et leader dans la conception et la fabrication de satellites en Malaisie. La charge utile devait fournir des images haute résolution de la Malaisie. Ce vol marqua la fin de Falcon 1
Premier vol de démonstration COTS-1. SpaceX devient la première société privée à récupérer un vaisseau spatial. 3 heures, test des propulseurs de manœuvre et rentrée[12]
Deuxième vol de démonstration (COTS-2). SpaceX devient la première société privée à amarrer un vaisseau à la station spatiale internationale ISS. Lancement effectué à la deuxième tentative[17],[13].
SpaceX CRS-1 a été un succès mais la seconde charge utile a été insérée sur une orbite anormalement basse et a été perdue en raison de la défaillance de Falcon 9, des règles de sécurité de l'ISS et du droit contractuel du propriétaire de la charge primaire de refuser un second allumage du deuxième étage sous certaines conditions[24],[25],[26].
Vol d'essai de Grasshopper d'une durée de 68 secondes. Ajout de capteurs de navigation en préparation aux futurs vols d'essai du prototype Falcon 9-R[32].
Vol d'essai de Grasshopper d'une durée de 60 secondes. Teste avec succès une manœuvre latérale en vol vers un site d'atterrissage situé à 100 mètres de la zone de lancement[33].
Mission commerciale et premier vol de la Falcon 9 v1.1, avec une capacité améliorée de 13 tonnes[29]. Après la séparation du deuxième étage, un essai d'amerrissage du premier étage a été tenté. L'essai a fourni de bonnes données (objectif principal), le premier étage a réussi une rentrée atmosphérique mais à mesure qu'il se rapprochait de l'océan, les forces aérodynamiques ont provoqué un roulis incontrôlable. Le moteur central, appauvri en carburant par la force centrifuge, s'est arrêté, entraînant l'impact et la destruction de l'étage[34].
Second lancement vers l'orbite de transfert géostationnaire (GTO). L'United States Air Force a évalué les données de lancement de ce vol dans le cadre d'un programme de certification distinct pour que SpaceX puisse lancer des charges utiles militaires américaines et a constaté que le lancement du Thaicom 6 avait des réserves de carburant inacceptables à la coupure du moteur après le second allumage du second étage[44].
Premier vol d'essai du démonstrateur expérimental Falcon 9-R Dev1, similaire à un premier étage de Falcon 9. Démontre avec succès sa capacité à faire du surplace, se déplacer latéralement et atterrir[45].
À la suite de la séparation du deuxième étage, SpaceX a effectué un deuxième essai de descente contrôlée du premier étage et a réussi le premier atterrissage contrôlé d'un lanceur orbital[48],[49]. Après l'atterrissage, le premier étage a basculé et a été détruit. C'était le premier booster Falcon 9 à voler avec des pieds d'atterrissage extensibles et la première mission Dragon avec le lanceur Falcon 9 v1.1.
La masse totale de la charge utile était de 1 316 kg (6 satellites pesant 172 kg chacun)[22] plus deux simulateurs de masse de 142 kg chacun[53]. C'était le deuxième booster Falcon 9 équipé de pieds d'atterrissage. Après la séparation du deuxième étage, SpaceX a effectué un test de descente contrôlée du premier étage, qui a décéléré de sa vitesse hypersonique dans la haute atmosphère, déployé ses pieds et touché la surface de l'océan. Comme pour la mission précédente, le premier étage a ensuite basculé comme prévu et n'a pas été récupéré[54].
Le lancement a établi un record de l'entreprise en réutilisant le même site de lancement entre deux vols séparés par seulement 22 jours (première fois inférieure à un mois). En raison de la taille record de la charge utile insérée en orbite GTO, la descente contrôlée du premier étage n'a pas été tentée[59].
Dernier vol d'essai de Falcon 9-R Dev1 et du programme d'essais d'atterrissages avec des démonstrateurs expérimentaux. Un capteur bloqué fait dévier la fusée de sa trajectoire prévue de vol et mène à sa destruction, sans faire de blessés[55],[60].
Le lancement a été retardé de deux semaines à la suite de vérifications supplémentaires à la suite d'un dysfonctionnement constaté lors du développement du bloc 1.2. Après le lancement réussi de la charge utile lourde en orbite GTO, la descente contrôlée du premier étage n'a pas été tentée[63].
Il s'agit du quatrième vol d'essai d'un retour du premier étage, avec un amerrissage prévu, qui a volé en approchant une vitesse nulle à l'atterrissage simulé à la surface de la mer[68]. Les images thermiques détaillée des données des capteurs infrarouges ont été recueillies par la NASA en partenariat commun avec SpaceX dans le cadre de la recherche sur les technologies de décélération retro-propulsive afin de développer de nouvelles approches de rentrée atmosphérique sur Mars. Les essais en vol du premier étage ont été réalisés avec succès, à l'exception de l'atterrissage, qui s'est déroulé sous les nuages où les données infrarouges n'étaient pas visibles[68].
Après la séparation du deuxième étage, SpaceX a effectué un vol d'essai, qui a tenté de ramener le premier étage de Falcon 9 dans l'atmosphère et de le poser sur une plate-forme flottante d'environ 90 × 50 m. Le premier étage réussit à atteindre la barge océanique mais sous un mauvais angle à la suite d'un manque de fluide hydraulique[74],[75], il la percute et termine sa chute dans l'océan. De nombreux objectifs ont été atteints, notamment le contrôle de précision de la descente de la fusée sur la plate-forme à un point précis de l'océan Atlantique.
Premier lancement sous contrat de lancement OSP 3 de l'USAF[78]. Premier lancement de SpaceX pour placer un satellite sur une orbite à une altitude orbitale plusieurs fois supérieure à celle de la Lune (L1). Le mauvais temps en haute mer empêche une tentative d'appontage sur la barge mais le premier étage réussit néanmoins un amerrissage en douceur, à moins de 10 m de la cible prévue[79].
Le lancement a été le premier en compagnie de Boeing pour transporter une charge plus légère qui a été spécifiquement conçue pour le lanceur Falcon 9. Le satellite ABS a atteint sa destination finale plus tôt que prévu et a commencé ses opérations le 10 septembre.
Le lancement a été le premier lancement conjoint de Boeing d'une pile bi-commsat plus légère, spécifiquement conçue pour tirer parti du lanceur SpaceX Falcon 9, moins coûteux[82],[83]. Par satellite, les coûts de lancement étaient inférieurs à 30 millions de dollars[84]. Le satellite ABS a atteint sa destination finale plus tôt que prévu et a commencé ses opérations le 10 septembre[85].
À la suite de la première phase du lancement, SpaceX a tenté un test de descente contrôlée du premier étage. Le premier étage atteint avec précision la barge océanique mais une trop grande vitesse latérale due à une valve défaillante le fait basculer et s'écraser sur la barge[88],[89].
La date de lancement initiale prévue le 21 mars 2015 a été retardée après qu'un problème avec le système de pressurisation à l'hélium a été identifié dans l'usine d'assemblage sur des pièces similaires[94]. Le lancement ultérieur, le 27 avril 2015, a permis de positionner le satellite à 52 °E.
Premier et seul vol d'essai du prototype de capsule DragonFly. Le test sert à prouver le futur système d'éjection de la capsule Crew Dragon au sol. Le vol dure 8 minutes et 54 secondes et se solde par l'atterrissage en douceur en mer du prototype à l'aide de parachutes[95],[96].
Explosion du 2e étage du lanceur après 2 minutes de vol. La capsule Dragon a survécu à l'explosion mais a été perdue lors de l'amerrissage, car son logiciel ne contenait pas de dispositions pour le déploiement de parachutes en cas de panne du lanceur.
La masse totale de la charge utile était de 2 034 kg (11 satellites pesant 172 kg chacun[22]), plus un simulateur de masse de 142 kg[53]). Ce fut le premier lancement de la version v1.1 (plus tard appelée Falcon 9 Full Thrust), avec une augmentation de puissance de 30%[104]. Orbcomm avait initialement accepté d'obtenir le troisième vol de la nouvelle fusée à poussée améliorée[105], mais le changement à la position de vol inaugural a été annoncé en octobre 2015[104]. SpaceX a reçu un permis de la FAA pour faire atterrir le premier étage sur un terrain solide à Cap Canaveral (la Landing Zone 1, à proximité du pas de tir)[106] et a réussi[103], ce qui constitue une étape historique, étant la première fusée de classe orbitale à faire atterrir son premier étage. Ce booster, numéro de série B1019, est maintenant exposé en permanence devant le siège social de SpaceX à Hawthorne, en Californie, à l'intersection du boulevard Crenshaw et de l'avenue Jack Northrop[102].
Dernier lancement du lanceur original Falcon 9 v1.1. Le satellite Jason-3 a été déployé avec succès pour cibler l'orbite. SpaceX a de nouveau tenté une récupération du propulseur du premier étage en atterrissant sur un drone autonome, situé cette fois dans l'océan Pacifique. La première étape a permis un atterrissage en douceur sur le navire, mais l'une des jambes d'atterrissage n'a pas réussi à se verrouiller et la fusée a explosé.
Premier lancement de la mission scientifique conjointe de la NASA et de la NOAA dans le cadre du contrat de lancement NLS II(en) (non lié aux contrats CRS de la NASA ou OSP3 de l'USAF). Dernier lancement du lanceur original Falcon 9 v1.1. Le satellite Jason-3 a été déployé avec succès[108]. SpaceX tente encore une fois de récupérer le premier étage sur une barge autonome, située cette fois dans l'océan Pacifique. Le premier étage a réussi un atterrissage en douceur sur le navire, mais un blocage sur l'une des jambes d'atterrissage n'a pas réussi à se verrouiller, de sorte que l'étage est tombé et a explosé[109],[110].
Deuxième lancement du lanceur amélioré Falcon 9 Full Thrust[104]. Après le lancement, SpaceX a tenté un atterrissage expérimental sur une barge[114], bien qu'un atterrissage réussi n'ait pas été prévu[115] car la masse au décollage dépassait la limite indiquée précédemment pour une GTO, il restait donc peu de carburant. Comme prévu, la récupération du booster a échoué. le premier étage "atterrit"[116], la descente contrôlée, la rentrée atmosphérique et la trajectoire vers la barge ont été couronnées de succès et ont permis de récupérer des données significatives[117].
La cpasule Dragon a transporté plus de 1 500 kg de fournitures et livré le module d'activité gonflable Bigelow Expandable Activity Module à l'ISS pour deux années d'essais en orbite[122]. Le premier étage de la fusée a atterri sans encombre sur la barge de SpaceX 9 minutes après le décollage, ce qui en fait le premier atterrissage réussi d'un propulseur de fusée sur un navire en mer dans le cadre d'un lancement orbital[123]. Le premier étage B1021 a également été le premier lanceur orbital à avoir déjà été utilisé, lors du lancement de SES-10 le 30 mars 2017[118].
JCSAT 14 soutiendra les réseaux de données, les télé-diffuseurs et les utilisateurs de communications mobiles au Japon, en Asie de l'Est, en Russie, en Océanie, à Hawaï et autres îles du Pacifique. C'était la première fois qu'un booster revenait sur Terre avec succès après une mission depuis l'orbite de transfert géostationnaire[127].
Fabriqué par Orbital ATK, le satellite de communication Thaicom 8 de 3 100 kilogrammes desservira la Thaïlande, l'Inde et l'Afrique depuis l'orbite géostationnaire (emplacement 78.5° est)[134]. Il est équipé de 24 transpondeurs actifs en bande Ku[135].
Un an après avoir mis au point cette technique sur le vol no 16, Falcon a de nouveau lancé deux satellites à propulseur ionique 702SP Boeing dans une configuration à double pile[85], les deux sociétés partageant les coûts de la fusée et de la mission. La tentative d'atterrissage sur une barge a échoué en raison de la faible poussée sur l'un des trois moteurs d'atterrissage[138]. L'étage a manqué de carburant juste au-dessus du pont de la barge[139].
Parmi les autres marchandises, un International Docking Adapter (IDA-2) a été transporté à bord de l'ISS. Cette mission marque le premier atterrissage réussi à Cap Canaveral (Landing Zone 1)[142]. En incluant la capsule Dragon réutilisable, la charge utile totale en orbite était de 6 457 kg.
Première tentative d'atterrissage avec une trajectoire balistique en utilisant un seul moteur. Tous les atterrissages antérieurs utilisant une trajectoire balistique avaient utilisé trois moteurs, ce qui a fourni plus de force de freinage, mais soumis le véhicule à des contraintes structurelles plus importantes. La combustion à l'atterrissage sur un seul moteur prend plus de temps et de carburant, mais permet d'avoir plus de temps pour apporter des corrections lors de la descente finale[143].
La fusée et la charge utile Amos-6 ont été perdus lors de l'explosion sur la rampe de lancement pendant le remplissage du propulseur avant un essai de mise à feu statique[145]. Le pas de tir était désert, il n'y a donc pas eu de blessés[146].
Mission de retour au vol après la perte d'Amos-6 en septembre 2016. Iridium NEXT remplacera la constellation originale d'Iridium, lancée à la fin des années 1990. Chaque mission Falcon transportera 10 satellites, avec pour objectif de terminer le déploiement de la constellation de satellites de rechange d'ici à la mi-2018. La masse totale de la charge utile était de 9 600 kg : 10 satellites pesant 860 kg chacun, plus le distributeur de 1 000 kg. L'orbite ciblé a une altitude de 780 kilomètres.
Premier vol du Falcon 9 depuis le pas de tir historique LC-39A du Centre spatial Kennedy, transportant des fournitures et du matériel pour soutenir des douzaines d'enquêtes scientifiques et de recherche prévues lors des Expéditions 50 et 51 de l'ISS.
Le satellite de communication EchoStar 23, basé sur une plateforme de secours du programme satellite annulé CMBStar 1, fournira des services de télédiffusion directe au Brésil. Il n'y a eu aucune tentative de récupération du premier étage car cette fusée n'avait pas de pattes d'atterrissage.
Première charge utile à voler sur un premier étage réutilisé (le B1021), précédemment lancée avec CRS-8, qui a également atterri une deuxième fois. Dans ce qui est également une première, le carénage de la charge utile est resté intact après un débordement réussi avec des propulseurs et un parachute orientable.
Premier lancement sous la certification SpaceX pour les missions spatiales de sécurité nationale, ce qui permet à SpaceX de contracter des services de lancement pour les charges utiles secrètes. La télémétrie de seconde vitesse et d'altitude a été cachée lors de la diffusion sur le Web, qui affichait pour la première fois la télémétrie de premier niveau, avec un suivi continu du booster du décollage à l'atterrissage.
Le lancement était initialement prévu pour la Falcon Heavy, mais les améliorations de performance ont permis à la mission d'être effectuée par une fusée Falcon 9, et aussi parce que la Falcon Heavy n'a pas encoré volé.
Cette mission a livré le NICER (Neutron Star Interior Composition Explorer) à l'ISS, ainsi que la plate-forme d'imagerie terrestre MUSES et le système solaire ROSA. Pour la première fois, cette mission a lancé une capsule Dragon remise à neuf, qui a volé pour la première fois en septembre 2014 lors de la mission CRS-4.
Deuxième fois qu'un lanceur a été réutilisé (après la mission Iridium de janvier 2017). BulgariaSat-1 est le premier satellite commercial de télécommunications appartenant à des Bulgares. Il fournira des émissions de télévision et d'autres services de communication sur le sud-est de l'Europe.
Premier vol avec des ailettes en grille de titane pour améliorer l'autorité de contrôle et mieux faire face à la chaleur lors de la rentrée atmosphérique. Également le plus court délai entre deux lancements à partir de différents pas de tir (2 jours).
En raison des contraintes liées à l'envoi d'un satellite lourd (6 760 kg) à l'orbite géostationnaire, la fusée a volé dans sa configuration consomptible et le premier étage n'a pas été récupéré. La fusée a atteint une orbite super-synchrone culminant à 43 000 km dépassant les exigences minimales de 28 000 km. À ce jour, c'est la charge utile la plus lourde que SpaceX est livrée à l'orbite géostationnaire. C'est aussi le plus court délai entre deux lancements à partir du même pas de tir (12 jours).
La charge utile externe manifestée pour ce vol était le détecteur de rayons cosmiques CREAM. Dernier vol d'une capsule Dragon neuve mais d'autres missions utiliseront des engins spatiaux remis à neuf. Dernière mission de ravitaillement de l’ISS confiées à SpaceX, dans le cadre du premier contrat Commercial Ressuply Service (CRS).
Formosat-5 est un satellite d'observation de la Terre de l'agence spatiale taiwanaise. En mars 2017, le remorqueur spatial SHERPA de Spaceflight Industries avait été retiré du livret de cargaison de cette mission.
5e vol du vaisseau Boeing X-37 dont la mission reste mystérieuse. La télémétrie de vitesse et d'altitude de deuxième étape a donc été cachée lors de la diffusion sur le Web, qui affichait à la place la télémétrie de premier niveau, avec un suivi continu du booster du décollage à l'atterrissage. Mission notable parce que Boeing est l'entrepreneur principal du X-37B, qui a jusqu'à présent été lancé par ULA, un concurrent de SpaceX et un partenariat de Boeing. Deuxième vol de la mise à niveau du Falcon 9 Block 4. L'engin devrait rester 270 jours dans l'espace avant de revenir se poser sur Terre.
Troisième vol de la mise à niveau de Falcon 9 Block 4. Ce lancement fait suite à celui d'Iridium NEXT-2 qui a eu lieu en juin, ce troisième lancement visant à transporter 10 autres satellites dans une constellation qui finira par être au nombre de 75.
3e fois qu'un booster a été réutilisé. Le satellite envoyé permettra à SES d'accélérer la distribution de chaînes HD et UHD sur l'ensemble des États-Unis, et la charge utile répondra aux besoins d'EchoStar pour servir les entreprises, les médias et les télé-diffuseurs.
KoreaSat 5A est un satellite en bande Ku capable de fournir des services de communication depuis l'Afrique de l'Est et l'Asie centrale vers le sud de l'Inde, l'Asie du Sud-Est, les Philippines, Guam, la Corée et le Japon. Il fournira des services allant de l'Internet à large bande, aux services de radiodiffusion et aux communications maritimes.
Deuxième réutilisation d'une capsule Dragon, précédemment pilotée sur CRS-6, et quatrième réutilisation d'un booster, précédemment piloté sur CRS-11, faisant de ce vol le premier dont les deux principaux composants ont été réutilisés en même temps. Ce vol est le 20e atterrissage de premier étage de fusée réussi.
Réutilisation du lanceur de la mission Iridium Next 2. La récupération du premier étage n'a pas été tentée et un atterrissage en mer a été effectué. Le lancement a eu lieu au coucher du soleil, ce qui a provoqué des vues "à couper le souffle" lorsque le Falcon 9 s'est mis en orbite.
Après un lancement réussi, le premier étage a bien atterri. Des rapports non confirmés suggèrent que le satellite Zuma aurait été perdu mais rien est confirmé. Certaines personnes suggèrent que Zuma est en orbite et fonctionne secrètement.
Conçu exclusivement pour répondre aux besoins des utilisateurs de sécurité gouvernementaux et institutionnels. C'est le premier satellites de GoveSat, un partenariat public-privé entre le gouvernement du Luxembourg et le monde, également le premier opérateur de satellite SES. Le premier étage de la fusée était censé sombrer au fond de l'océan mais a été retrouvé en train de flotter à la surface de l'eau.
Premier vol de Falcon Heavy, utilisant deux lanceurs Falcon 9, récupérés comme boosters latéraux (B1023 de la mission Thaicom 8 et B1025 de CRS-9). L'essai au feu statique de la fusée a eu lieu le 24 janvier 2018, c'était la première fois que les 27 moteurs ont été testés en même temps. Le décollage s'est déroulé à 21h45 heure française, avec plusieurs dizaines de milliers de spectateurs venus sur place et des millions d'internautes qui ont suivi le live de SpaceX. Ce premier vol est un succès partiel car le premier étage, qui était censé atterrir sur une barge, a percuté l'océan à plus de 500 km/h à une centaine de mètres de la barge, à cause d'un moteur qui ne s'est pas allumé. Malgré ça, de nouvelles portes s'ouvrent à SpaceX notamment vers la conquête de mars ou le retour de l'homme sur la Lune.
Le satellite PAZ pèse 1 200 kg et la masse combinée avec les charges utiles secondaires est de 2 000 kg car la fusée a également transportée deux satellites d'essai (400 kg chacun) pour leur prochain réseau de communications en orbite terrestre basse. Ce lancement était le dernier vol d'un premier étage du bloc 3, en réutilisant le booster B1038 de la mission Formosat-5. Pour la première fois, l'entreprise a tenté de récupérer la coiffe de la fusée grâce à un géant filet, mais la mission a échoué. La coiffe a percuté l'eau à une centaine de mètres de son objectif, mais reste tout de même intacte grâce aux parafoil[147] et micropropulseurs qui ont freiné sa chute. La coiffe étant intact et pouvant être réutilisé, la récupération peut être qualifié d'échec partiel.
Le satellite donnera à Hipsasat une capacité de bande Ku supplémentaire, dans la région andine et au Brésil. De même, l'Hispasat développera la capacité transatlantique du Groupe dans la connectivité Europe-Amérique et Amérique-Europe. Il devrait avoir une durée de vie de 15 ans.
Le premier des quatre lancements prévus pour 2018. Iridium-5 a envoyé 10 autres satellites Iridium NEXT en orbite, portant le nombre total de satellites déployés à 50. Ce lancement a fait usage du même booster que pour le lancement d'Iridium-3 qui a eu lieu en octobre 2017[148].
Réutilisation du lanceur de CRS-12. Le fret a une masse totale de 2 647 kg et comprend les charges utiles externes MISSE-FF, une expérience destinée à tester le comportement des matériaux exposés dans l'espace, ASIM (314 kg) une expérience de l'Agence spatiale européenne analysant les phénomènes lumineux transitoires et en fret interne RemoveDebris un petit satellite expérimental de 100 kg chargé de tester des techniques de capture des débris spatiaux[150].
Le principal objectif de la mission du satellite TESS est d'étudier les étoiles les plus brillantes près de la Terre sur une période de deux ans. Il sera possible d'étudier la masse, la taille, la densité et l'orbite d'une grande quantité de petites planètes. C'est la première mission scientifique de haute priorité de la NASA lancée par SpaceX, et marque le 24e atterrissage réussi du booster de la fusée.
Avec une masse de 3 600 kg, Bangabandhu 1 est le premier satellite de communication géostationnaire du Bangladesh. Sa durée de vie est prévue pour 15 ans[151].
GFZ a organisé un partage de GRACE-FO sur une fusée Falcon 9 avec Iridium à la suite de l'annulation de leur contrat de lancement de Dniepr en 2015. Le PDG d'Iridium, Matt Desch, a révélé en septembre 2017 que GRACE-FO serait lancé lors de la sixième mission d'Iridium NEXT.
Le satellite de communication SES-12 élargira les capacités de SES à fournir des services de diffusion directe à haut débit. Il desservira le Moyen-Orient et la région Asie-Pacifique au même endroit que SES-8. C'est le plus grand satellite construit pour SES.
La mission CRS-15 a transporté 2 410 kg de masse pressurisée et 900 kg de non pressurisé. La charge utile externe est ECOSTRESS. Ce 57e vol du Falcon 9 est l'avant dernier avec comme premier étage un Block 4.
Telstar 19 VANTAGE est un satellite de communication avec deux charges utiles à haut débit, l'une en bande Ku et l'autre en bande Ka. Il sera le deuxième d'une nouvelle génération de satellites Telesat optimisés pour desservir les types d'applications gourmandes en bande passante de plus en plus utilisées dans l'industrie des satellites. C'est le plus lourd satellite que SpaceX est envoyé jusqu'à maintenant.
7e lancement Iridium avec 10 nouveaux satellites de communications. Le premier étage a atterri avec succès dans les pires conditions météorologiques jusqu'à maintenant. Le bateau Mr. Steven a tenté de récupérer la coiffe de la fusée avec un filet 4x plus grand mais ce fut un échec en raison des conditions météorologiques.
Telkom-4 est un satellite de télécommunications géostationnaire indonésien, il doit remplacer son satellite Telkom 1 qui sera mis hors service. Il transporte 60 répéteurs en bande C dont 36 utilisés en Indonésie et le reste pour le marché indien. Il est conçu pour fournir un service pendant 15 ans ou plus[152]. Ce vol est le premier avec comme booster un Block 5 déjà utilisé (le 11 mai 2018).
Telstar 18V est un satellite de communication avec deux charges utiles à haut débit, l'une en bande Ku et l'autre en bande C. Le satellite offrira une performance supérieure pour les diffuseurs, les fournisseurs de services de télécommunications et les réseaux d'entreprise au sol, dans les airs et en mer[153].
La constellation argentine SAOCOM devait initialement être lancé en 2012. Ce lancement est le premier utilisant la piste d'atterrissage de la côte ouest.
Le satellite contribuera à la capacité de l'entreprise à fournir du contenu de haute qualité à travers le Moyen-Orient et l'Afrique du Nord. Il proposera des transpondeurs en bande Ku et en bande Ka pour fournir des services de distribution télévisuelle et gouvernementale
Mission de "covoiturage" de plus de 70 petits satellites de plusieurs nationalités différentes, dont deux satellites d'imagerie "SkySat" haute résolution pour Planet Labs et deux "CubeSats" de lycée faisant partie du satellite ElaNa 24 de la NASA . Le Kazakhstan a décidé d'utiliser Falcon 9 pour lancer ses deux satellites, même avec l'installation spatiale du cosmodrome de Baïkonour à l'intérieur de ses propres frontières. C'est la première fois depuis l'histoire de Falcon 9 qu'un lanceur est utilisé pour la troisième fois.
Lors de la conférence de pré-lancement de CRS-9, Kirk Shireman, responsable du programme ISS de la NASA, a déclaré que cette mission transporterait l'adaptateur d'amarrage IDA-3. Initialement prévu la veille, le vol a été décalé en raison de traces de moisissures sur de la nourriture destinée à des souris.
GPS IIIA comprend les dix premiers des satellites GPS III, qui seront utilisés pour maintenir le système de positionnement global Navstar opérationnel. Le dixième et dernier lancement du bloc GPS IIIA est prévu au deuxième trimestre de 2023. À la demande de l'Air Force, le lanceur n'aura ni "Grid-fins", ni "Landing Legs", afin d'augmenter la puissance du lanceur, le premier étage ne revolera donc pas.
L'atterrisseur Sparrow Moon était l'un des candidats au Google Lunar X-Prize, dont les développeurs SpaceIL avaient obtenu un contrat de lancement avec SpaceX en . L'engin spatial israélien partagera le vol avec un grand satellite de communications lancé sur une orbite de transfert supersynchrone et atteignant un apogée de 60 000 km. Il devrait atterrir le . Avec une masse de 585 kg, ce sera l'un des plus petits vaisseaux spatiaux à atterrir sur la Lune.
PSN 6 est un satellite de communication géostationnaire indonésien construit par SSL. Avec les transpondeurs en bande C et en bande Ku, le satellite sera utilisé pour la communication voix et données, l'Internet haut débit et la distribution vidéo dans tout l'archipel indonésien. PSN(en) est la première société privée de télécommunications par satellite en Indonésie et l'un des principaux fournisseurs asiatiques d'une gamme complète de services de télécommunication par satellite[156]
Lancement de démonstration sans équipage de la capsule Crew Dragon avec l'accord de la NASA, destiné à envoyer des astronautes à bord de la station spatiale internationale. La capsule transportait un mannequin, Ripley, équipé de capteurs pour étudier le comportements qu'aurait un astronaute dans ces conditions de vol. Une fois amarrée, la capsule doit rester 5 jours avant de revenir sur Terre.
Deuxième vol de Falcon Heavy, le premier avec des boosters « Block 5 » d'une capacité au décollage 10 % supérieur à la version antérieure. SpaceX prévoit d'utiliser les boosters latéraux plus tard pour la mission STP-2. Arabsat-6A, un satellite saoudien de 6 000 kg, est le plus avancé des satellites de communications commerciales jamais construit par Lockheed Martin.
Premier lancement de la mission Starlink (après les essais Tintin A et Tintin B). Ce lancement est le premier d'une longue série destinée à envoyer 12 000 satellites de télécommunication dans l'espace. Avec cette constellation, SpaceX souhaite devenir un opérateur mondial pouvant donner un accès à internet même dans les endroits les plus reculés sur Terre. Sur les 60 satellites envoyés, 3 ont été perdus.
La mission Constellation RADARSAT est une mission de lancement du gouvernement du Canada pour 2018 qui consiste en une flotte de trois satellites d'observation de la Terre. Ces satellites possède notamment une nouvelle technologie permettant de localiser des navires. La charge utile, avec un coût d'environ 1 milliard de dollars, fait de ce lancement celui avec la charge la plus chère réalisé par l'entreprise.
Les deux booster utilisés pour ce lancement étaient ceux de la mission Arabsat-6A 2 mois plus tôt. Ce lancement de 24 satellites a été décrit comme le plus compliqué jamais réalisé par SpaceX. Le premier étage de la fusée, qui devait atterrir sur une barge, s'est finalement écrasé dans l'océan. Pour la première fois, la moitié de la coiffe a été réceptionnée par le navire GO Ms Tree.
Cette mission a transporté l'International Docking Adapter. Ce système d'amarrage est destiné à être monté sur l'ISS pour transformer l'ancien système utilisé par la navette spatiale en un nouveau pouvant accueillir notamment les vaisseaux Dragon V2, CST-100 et Orion.
Starhopper est le premier prototype de la prochaine fusée de SpaceX Starship. Ce premier vol plus communément appelé « saut » s'est déroulé de nuit et servait principalement de test pour l'unique moteur Raptor. L'objectif du vol était de réussir à faire décoller le prototype, le déplacer légèrement puis le reposer. Le pas de tir se situe juste à côté du site de construction du prototype, à Boca Chica au Texas. Malgré le succès apparent, un départ de feu a été aperçu au moment de atterrissage mais qui ne causa pas de dégâts.
Après la perte d'AMOS-6 en , SpaceX a proposé à Spacecom un lancement gratuit pour compenser la perte du satellite.[2]Amos 17 est en satellite de télécommunication à haut débit. Il est destiné à étendre et à renforcer la couverture de Spacecom en Afrique.[3]
Starhopper est le premier prototype de la prochaine fusée de SpaceX Starship. Ce second vol plus communément appelé « saut » servait de nouveau de test pour le moteur Raptor. L'objectif pour ce vol était de faire atteindre au prototype l'altitude de 150 mètres, le déplacer horizontalement sur une courte distance puis le reposer plus loin sur son pad d’atterrissage. Le vol aura duré pas loin d'une minute (57 secondes) montrant pour la première fois le prototype prendre vol en plein jour. Ce second vol fut le dernier pour Starhopper, il sert désormais de banc d'essai stationnaire pour les moteurs Raptor.
Deuxième lancement de la mission Starlink et de son lot de 60 satellites faisant suite au premier vol s'étant déroulé le . Lancée sur une orbite de 290 km et d'une masse de 15 600 kg, c'est la charge utile la plus lourde lancée à ce jour par SpaceX, battant le record établi par le précédent vol Starlink[163]. Ce vol inaugure le quatrième vol d'un même booster Falcon 9 suivi d'un atterrissage. C'était également la première fois qu'un Falcon 9 réutilisait ses deux carénages servant à abriter la charge utile (d'ArabSat-6A en ). Il était prévu de récupérer les carénages avec les bateaux Ms Tree(en) et Ms Chief mais le plan a été abandonné en raison d'une mer agitée[164]
Deuxième vol de ravitaillement avec une capsule dragon utilisée pour la troisième fois. Des améliorations ont été apportées au Cold Atom Laboratory (CAL) comprenant le test de la propagation du feu dans l'espace, l'accouplement de l'orge en microgravité et des expériences pour tester la croissance musculaire et osseuse en microgravité. Les charges utiles secondaires comprennent hyperspectrale (HISUI), une expérience pour l'image à haute résolution à travers toutes les couleurs du spectre lumineux, permettant la photographie du sol, des roches, de la végétation, de la neige, de la glace et des objets artificiels. De plus, il y avait trois CubeSats de la mission ELaNa 28 de la NASA ainsi que le satellite AztechSat-1 construit par des étudiants au Mexique
C'était le troisième lancement du Falcon 9 pour JSAT, les deux précédents s'étant déroulés en 2016. SpaceX a réussi à faire atterrir le booster B1056.3 mais les deux moitiés de carénage ont raté les bateaux de récupération MmeTree et MmeChief. Ils ont toutefois été repêchés en pleine mer.
Troisième grand lot de satellites Starlink. En tant que test pour les futures missions, l'un des 60 satellites comprend un revêtement pour rendre le satellite moins réfléchissant, et donc moins susceptible d'interférer avec les observations astronomiques à la suite de nombreux retours négatifs venant d'astronomes.
Test en conditions réelles du système d'abandon de la capsule Crew Dragon. Le test devait auparavant être réalisé avec la capsule SpX-DM1 mais cette dernière a explosé lors d'un essai au sol des moteurs SuperDraco le 20 avril 2019. Ce test d'abandon a donc utilisé la capsule initialement prévue pour le premier vol avec équipage. Comme prévu, le booster de la fusée a été détruit par les forces aérodynamiques après l'éjection de la capsule[168].
Cinquième lot de satellites Starlink. SpaceX a utilisé un nouveau profil de vol, déployant ses satellites sur une orbite elliptique de 212 × 386 km au lieu de se lancer sur une orbite circulaire et d'allumer à deux reprises le moteur du deuxième étage, permettant le déploiement des 60 satellites en seulement 17 minutes après le décollage. Malgré l'inauguration de la 50e récupération d'un premier étage, ce dernier n'a pas atterri sur la barge. Il a effectué un atterrissage en douceur juste à côté de sa cible.
Dernier lancement de la phase 1 du contrat CRS marquant ainsi le dernier vol de cette version de la capsule Dragon. Ce vol inaugure également le 50e atterrissage réussi pour le premier étage d'un Falcon 9.
Sixième lancement de 60 satellites Starlink. Le premier étage du lanceur, le B1048, effectuait son cinquième lancement avec succès mais a échoué lors de son atterrissage à la suite de la panne d'un moteur quelques minutes après le décollage. Les deux parties de la coiffe abritant les charges utiles volaient pour la deuxième fois et ont été repêchés en mer après retombée en parachute sur l'eau.
Septième lancement de 60 satellites Starlink. Le 84e vol de la fusée Falcon 9, elle a dépassé Atlas V pour devenir la fusée américaine opérationnelle la plus utilisée[173]. Réutilisation du premier étage utilisé lors des lancements no 69, 72 et 79.
Premier vol orbital avec équipage partant du sol américain depuis la navette spatiale STS-135 en juillet 2011. Il transporte les astronautes de la NASA Bob Behnken et Doug Hurley vers la Station spatiale internationale. Premier lancement d'astronautes sur une Falcon 9. SpaceX devient la première société privée capable d'envoyer des astronautes en orbite. Le flux en direct de SpaceX a atteint un pic de 4,1 millions de téléspectateurs, tandis que la NASA a estimé à environ 10 millions le nombre de personnes en simultané sur diverses plateformes en ligne, et environ 150 000 personnes se sont rassemblées sur la côte spatiale de la Floride.
Initialement prévu le 27 mai, le vol est finalement reporté au 30 mai 19:22:45 UTC pour mauvaises conditions météorologiques.
Huitième lot de 60 satellites Starlink. L'un des satellites, baptisé VisorSat, dispose d'un pare-soleil pour réduire l'impact sur les observations astronomiques au sol[176]. Réutilisation du premier étage utilisé lors des lancements no 61, 67, 71 et 78.
Neuvième lot de 58 satellites Starlink. Ce lancement transporte également trois satellites d'imagerie terrestre SkySat (16, 17 et 18). Réutilisation du premier étage utilisé lors des lancements no 76 et 81. C'est aussi le plus court délai entre deux lancements à partir du même pas de tir (9 jours).
Le contrat de lancement a été attribué à SpaceX pour 96,5 millions de dollars. Le GPS-IIIA (Global Positioning System) est la première étape de l'évolution de la troisième génération de satellites GPS. Troisième satellite de navigation de troisième génération de l'armée de l'air américaine pour le système de positionnement global.
Avec une masse de 5 à 6 tonnes, ce sera le premier satellite militaire dédié à la Corée du Sud, contracté par l'administration sud-coréenne du programme d'acquisition de la défense en 2014.
Vol du premier prototype à taille réelle du second étage de la prochaine fusée de SpaceX, le Starship. Ce vol plus communément appelé « saut » servait de nouveau de test pour le moteur Raptor, mais aussi pour les réservoirs. L'objectif pour ce vol était de faire atteindre au prototype l'altitude de 150 mètres, le déplacer horizontalement sur une courte distance puis le reposer plus loin sur son pad d’atterrissage. Le vol aura duré presque une minute (45 secondes). Ce vol fut le seul pour le Starship SN5, qui a depuis été détruit.
Déploiement de satellites d'observation de la Terre construits par l'agence spatiale argentine CONAE. Initialement prévu comme un lancement à partir de Vandenberg, il s'agit du premier vol vers une orbite polaire à Cap Canaveral depuis 1960. Initialement prévu fin mars 2020, le lancement est finalement reporté ultérieurement pour cause de restrictions dû à la pandémie de COVID-19[183].
Vol du second prototype à taille réelle du second étage de la prochaine fusée de SpaceX, le Starship. Ce vol plus communément appelé « saut » servait de test pour valider les résultats du vol du Starship SN5 et vérifier les corrections apportées à la trajectoire de vol. L'objectif pour ce vol était de faire atteindre au prototype l'altitude de 150 mètres, le déplacer horizontalement sur une courte distance puis le reposer plus loin sur son pad d’atterrissage. Ce vol fut le seul pour le Starship SN6, qui a depuis été détruit.
Premier lancement de la phase 2 du contrat CRS, qui utilisera des vaisseaux spatiaux Dragon 2 réutilisés pour leur première mission de réapprovisionnement de la Station spatiale internationale. Le contrat a été signé en 2015.
Vol du premier prototype équipé de volets de corps (body flaps), d'un cône aérodynamique et de trois moteurs de la prochaine fusée de SpaceX, le Starship. Ce vol servait de test aérodynamique à haute altitude et des manœuvres nécessaires pour le retour du second étage de l'orbite terrestre. SN8 décolle de manière nominale et atteint l'altitude attendue de 12,5 km avant d'effectuer une manœuvre de basculement à l'horizontale, une chute libre contrôlée jusqu'au site d'atterrissage en position horizontale (dite belly flop) et pour finir une manœuvre de rallumage des moteurs et de passage de la position horizontale à verticale. Cependant, un manque de pression dans un des réservoirs de carburant cause un manque de puissance lors de la phase d'atterrissage, une vitesse trop élevée et la destruction du prototype.
Ce grand satellite de radiodiffusion haute puissance pour le service de radio audio numérique (DARS) de Sirius XM a été construit par Space Systems / Loral (SS / L). Il fonctionnera dans le spectre de la bande S et remplacera le satellite SXM-3. Il générera plus de 20 kW de puissance et aura un grand réflecteur d'antenne dépliable, ce qui permet de diffuser aux radios sans avoir besoin de grandes antennes paraboliques au sol
En août 2019, SpaceX a annoncé la création de ses propres services de lancement en covoiturage destinés au marché des petites entreprises, avec des prix aux alentours d'un million de dollars pour une charge utile de 200 kg. Le premier lancement était prévu pour mars 2020 pour une orbite solaire synchrone de 500 à 600 km.
Second vol du prototype complet du deuxième étage de la prochaine fusée de SpaceX, le Starship. Ce vol servait de test aérodynamique à haute altitude et des manœuvres nécessaires pour le retour du second étage de l'orbite terrestre. Ce test prévoit un décollage vers une altitude de 10 km avant d'effectuer une manœuvre de basculement à l'horizontale, une chute libre contrôlée jusqu'au site d'atterrissage en position horizontale (dite belly flop) et une manœuvre de rallumage des moteurs et de passage de la position horizontale à verticale. Lors de la manœuvre de retournement, un des moteurs Raptor ne se rallume pas en raison d'un niveau de puissance minimale inférieur seuil nécessaire à l'allumage et le prototype est détruit à l'atterrissage.
Troisième vol du prototype complet du deuxième étage de la prochaine fusée de SpaceX, le Starship. Ce vol servait de test aérodynamique à haute altitude et des manœuvres nécessaires pour le retour du second étage de l'orbite terrestre. Ce test prévoit un décollage vers une altitude de 10 km avant d'effectuer une manœuvre de basculement à l'horizontale, une chute libre contrôlée jusqu'au site d'atterrissage en position horizontale (dite belly flop) et une manœuvre de rallumage des moteurs et de passage de la position horizontale à verticale. Lors de la phase d'atterrissage, les 3 moteurs sont rallumés à la fin de la chute contrôlée, puis deux sont éteints l'un après l'autre pour effectuer l'atterrissage final avec un moteur. Cependant, l'ingestion de bulles d'hélium empêche la pleine poussée du moteur, causant des dommages au prototype lors de l'atterrissage et sa destruction au sol 8 minutes plus tard.
Quatrième vol du prototype complet du deuxième étage de la prochaine fusée de SpaceX, le Starship. Ce vol servait de test aérodynamique à haute altitude et des manœuvres nécessaires pour le retour du second étage de l'orbite terrestre. Ce test prévoit un décollage vers une altitude de 10 km avant d'effectuer une manœuvre de basculement à l'horizontale, une chute libre contrôlée jusqu'au site d'atterrissage en position horizontale (dite belly flop) et une manœuvre de rallumage des moteurs et de passage de la position horizontale à verticale. Après 5 minutes et 49 secondes de vol, à l'instant où le Starship rallume ses moteurs, le prototype explose avant de toucher le sol. La cause de l'échec provient d'une surpression de carburant consécutive à une fuite de méthane résultant en un incendie sur l'un des moteurs et une partie de l’avionique, provoquant un démarrage difficile lors de la tentative d’atterrissage dans une turbopompe méthane.
Deuxième vol opérationnel de Crew Dragon pour le programme d'équipage commercial. Il a transporté quatre astronautes vers l'ISS pour un séjour de 6 mois à bord de la station.
Cinquième et dernier vol à haute altitude du prototype complet du deuxième étage de la prochaine fusée de SpaceX, le Starship. Ce vol servait de test aérodynamique à haute altitude, des manœuvres nécessaires pour le retour du second étage de l'orbite terrestre et des modifications apportées à la suite des échecs à l'atterrissage des Starship SN8, SN9, SN10 et SN11. Ce test prévoit un décollage vers une altitude de 10 km avant d'effectuer une manœuvre de basculement à l'horizontale, une chute libre contrôlée jusqu'au site d'atterrissage en position horizontale (dite belly flop) et une manœuvre de rallumage des moteurs et de passage de la position horizontale à verticale. Premier prototype complet du second étage à accomplir tous les objectifs de vol, incluant l'atterrissage.
Un grand satellite de radiodiffusion à haute puissance destiné au service de radio audio numérique (DARS) de Sirius XM pour remplacer les satellites vieillissants XM 3 et XM 4 et permettre la diffusion sur des radios sans recourir à de grandes antennes paraboliques au sol.
Troisième vol opérationnel de Crew Dragon pour le programme d'équipage commercial. Il a transporté quatre astronautes vers l'ISS pour un séjour de 6 mois à bord de la station.
Le test de redirection d'astéroïdes doubles mesurera les effets cinétiques de l'écrasement d'un impacteur sur la surface d'un astéroïde. Ce sera la première mission à démontrer la capacité de redirection d'astéroïdes.
Trois télescopes identiques de la NASA sur un seul vaisseau spatial, conçus pour mesurer les rayons X. Le contrat de lancement a été attribué à SpaceX pour 50,3 millions de dollars.
SpaceX bat son record de vols en 2022 avec 61 lancements, dont 60 pour Falcon 9. La société atteint son objectif de lancement pour l'année, qui était de 60[234].
40 des 49 satellites n'ont pas atteint leur orbite finale et ont été détruits lors de leur rentrée dans l'atmosphère en raison d'un orage géomagnétique[237]
Quatrième vol opérationnel de Crew Dragon pour le programme d'équipage commercial. Il a transporté quatre astronautes vers l'ISS pour un séjour de 6 mois à bord de la station.
Cinquième vol opérationnel de Crew Dragon pour le programme d'équipage commercial. Il a transporté quatre astronautes vers l'ISS pour un séjour de 6 mois à bord de la station.
Premier lancement en trois ans de Falcon Heavy. Premier vol de SpaceX à placer une charge utile directement dans une orbite géostationnaire. Pour cette mission, l'étage central n'était pas équipé de pieds d'atterrissage ni des grid fins, la récupération de ce dernier n'étant pas prévue.
Hakuto-R (R pour Reboot) est dérivé du projet de Hakuto qui était l'un des participants du Google Lunar X Prize. Le projet de redémarrage vise à lancer un premier atterrisseur en 2022[241] qui doit déposer les rovers Rashid 1 (Émirats arabes unis) et Sora-Q (démonstrateur technologique japonais). Lunar Flashlight est un orbiteur lunaire de la NASA chargé d'identifier la présence de glace dans les cratères lunaires.
GOES-U est un satellite météorologique, le quatrième et dernier de la série de satellites GOES-R exploités par la National Oceanic and Atmospheric Administration (NOAA).
Une fuite d'oxygène liquide s'est produite sur le deuxième étage. Le moteur Merlin Vacuum a connu une anomalie et n'a pas pu terminer sa deuxième mise à feu[242].
la 11e mission dédiée au programme de covoiturage de petits satellites de SpaceX. À ce jour, SpaceX a lancé plus de 1 000 petits satellites pour plus de 130 clients[243].
Après une ascension réussie, le premier étage du propulseur de la fusée Falcon 9 s'est renversé après l'atterrissage sur le drone A Shortfall of Gravitas[244]
Cinquième vol d'essai orbital du Starship : le plan de vol prévu est similaire aux précédents. Le premier étage est rattrapé par la tour de lancement, le vaisseau effectue sa rentrée atmosphérique en subissant moins de dégâts qu'au précédent vol, car de nombreuses modifications ont été apportées aux tuiles thermiques, notamment l'ajout d'une nouvelle couche ablative sous les tuiles des zones sensibles du vaisseau.
Sixième vol d'essai orbital du Starship : l'objectif du vol, rallumer l'un des 3 moteurs Raptor centraux du vaisseau spatial Starship une fois dans l'espace a été réussi avec succès. La récupération du premier étage Super Heavy par les pinces de la tour de lancement a été annulée à cause des conditions non réunies. Il a donc été choisi un amerrissage qui a été effectué en douceur. Mais après s'être couché en douceur dans l'eau, le Super Heavy a explosé. L'atterrissage du second étage n'ayant pas été prévu, le vaisseau Starship a donc amerri en douceur.
cinquième mission opérationnelle du « Proliferated System ». Ce système utilise des constellations de satellites pour fournir rapidement les informations requises et avoir moins de risques opérationnels en cas de pertes de satellites[250].
O3b mPOWER est un système de télécommunications par satellite développé pour la société SES et dont le déploiement en orbite a débuté en décembre 2022.
Prochains lancements
Les lancements futurs[252],[253] sont répertoriés par ordre chronologique lorsque les dates de planification fermes sont fixées. L'ordre des lancements ultérieurs est beaucoup moins certain, car les annonces de SpaceX n'incluent pas de calendrier précis. Les dates de lancement provisoires sont choisies à partir de sources individuelles propres à chaque lancement. Les lancements devraient avoir lieu « au plus tôt » à la date indiquée.
Transport Tranche 0 est une constellation expérimentale de satellites militaires développée par la SDA (Space Development Agency), qui servira de colonne vertébrale à la NDSA[254].
VIPER est le premier engin spatial chargé de mesurer in situ les gisements de glace d'eau que des orbiteurs ont détecté depuis l'orbite sans toutefois pouvoir quantifier de manière précise les caractéristiques des gisements. À l'aide de ses instruments l'astromobile doit mesurer la distribution verticale et horizontale ainsi que les caractéristiques physiques de la glace d'eau et d'autres volatiles présents dans les régions du pôle sud de la Lune où la température est suffisamment basse pour permettre son stockage à une échelle de temps géologique
Deux premiers modules de la future station orbitale Lunar Gateway
Notes et références
↑ a et bLes boosters du premier étage de Falcon 9 sont désignés avec un numéro de série de construction et un numéro de vol optionnel lorsqu'ils sont réutilisés, par exemple B1021.1 et B1021.2 représentent les deux vols du booster B1021.
↑ abcde et fStephen Clark, « Q&A with SpaceX founder and chief designer Elon Musk », Spaceflight Now, (consulté le ) : « The next version of Falcon 9 will be used for everything. The last flight of version 1.0 will be Flight 5. All future missions after Flight 5 will be v1.1. ».
« Orbcomm requested that SpaceX carry one of their small satellites (weighing a few hundred pounds, vs. Dragon at over 12,000 pounds)... The higher the orbit, the more test data [Orbcomm] can gather, so they requested that we attempt to restart and raise altitude. NASA agreed to allow that, but only on condition that there be substantial propellant reserves, since the orbit would be close to the space station. It is important to appreciate that Orbcomm understood from the beginning that the orbit-raising maneuver was tentative. They accepted that there was a high risk of their satellite remaining at the Dragon insertion orbit. SpaceX would not have agreed to fly their satellite otherwise, since this was not part of the core mission and there was a known, material risk of no altitude raise. »
↑ a et bKirstin Brost et Yves Feltes, « SpaceX and SES Announce Satellite Launch Agreement »(Archive.org • Wikiwix • Archive.is • Google • Que faire ?), SpaceX and SES, (consulté le ) : « Falcon 9 booster to launch SES-8 to GTO in 2013 [...] SES is one of the largest satellite operators in the world, and the deal marks what will be the first geostationary satellite launch using SpaceX's Falcon 9 rocket. The firm launch agreement with SpaceX also includes an option for a second SES launch. It supplements SES' existing multi-launch agreements with its traditional launch providers Arianespace and ILS. [...] The SES-8 satellite is scheduled to launch in the first quarter of 2013 from SpaceX's Launch Complex 40 at the Air Force Station at Cape Canaveral, Florida. ».
« The decision by SES to launch a medium-size geostationary communications satellite on a Space Exploration Technologies (SpaceX) Falcon 9 rocket marks another effort by satellite operators to add to their bottom lines by taking a tight-fisted approach to the prices they pay for launch services. [...] SES-8 is scheduled to launch in the first quarter of 2013 to the orbital slot at 95 deg. East Long., where it will be co-located with the NSS-6 satellite to support growing demand for direct-to-home broadcast TV delivery in South Asia and Southeast Asia, as well as customers in the Middle East, Afghanistan, Australia, Papua New Guinea and Korea. »
« The April 17 F9R Dev 1 flight, which lasted under 1 min., was the first vertical landing test of a production-representative recoverable Falcon 9 v1.1 first stage, while the April 18 cargo flight to the ISS was the first opportunity for SpaceX to evaluate the design of foldable landing legs and upgraded thrusters that control the stage during its initial descent. »
↑ a et bFrank, Jr. Morring, « NASA, SpaceX Share Data On Supersonic Retropropulsion : Data-sharing deal will help SpaceX land Falcon 9 on Earth and NASA put humans on mars », Aviation Week, (lire en ligne [archive du ], consulté le ) :
« [The] partnership between NASA and SpaceX is giving the U.S. space agency an early look at what it would take to land multi-ton habitats and supply caches on Mars for human explorers, while providing sophisticated infrared (IR) imagery to help the spacecraft company develop a reusable launch vehicle. After multiple attempts, airborne NASA and U.S. Navy IR tracking cameras ... captured a SpaceX Falcon 9 in flight as its first stage [fell] back toward Earth shortly after second-stage ignition and then reignit[ed] to lower the stage toward a propulsive "zero-velocity, zero-altitude" touchdown on the sea surface. »
↑« Next SpaceX Launch Attempt Saturday, Jan. 10 », NASA, (lire en ligne, consulté le )
« But the Falcon 9 is not just changing the way launch-vehicle providers do business; its reach has gone further, prompting satellite makers and commercial fleet operators to retool business plans in response to the low-cost rocket. In March 2012, Boeing announced the start of a new line of all-electric telecommunications spacecraft, the 702SP, which are designed to launch in pairs on a Falcon 9 v1.1. Anchor customers Asia Broadcast Satellite (ABS) of Hong Kong and Mexico's SatMex plan to loft the first two of four such spacecraft on a Falcon 9. [...] Using electric rather than chemical propulsion will mean the satellites take months, rather than weeks, to reach their final orbital destination. But because all-electric spacecraft are about 40% lighter than their conventional counterparts, the cost to launch them is considerably less than that for a chemically propelled satellite. »
↑Stephen Clark, « Plasma-driven satellites launched from Cape Canaveral », Spaceflight Now, (lire en ligne, consulté le ) :
« Eutelsat and ABS paid less than $30 million a piece to launch their satellites on the Falcon 9, a benefit of the SpaceX launcher's bargain prices and Boeing's effort to shrink the mass of communications spacecraft, officials said. Such a low price for the launch of a communications satellite is "almost unheard of," according to Betaharon, a satellite industry veteran with more than 35 years of experience. »
« Musk tweeted that the lockout collet on one of the rocket's four legs didn't latch, causing it to tip over after landing. He said the "root cause may have been ice buildup due to condensation from heavy fog at liftoff." »
↑Jessica Orwig, « SpaceX will attempt a potentially historic rocket landing this week — here's how to watch live », Business Insider, (lire en ligne, consulté le )
↑« SES-9 Mission »(Archive.org • Wikiwix • Archive.is • Google • Que faire ?) [PDF], Press Kit, SpaceX, (consulté le ) : « This mission is going to a Geostationary Transfer Orbit. Following stage separation, the first stage of the Falcon 9 will attempt an experimental landing on the "Of Course I Still Love You" droneship. Given this mission's unique GTO profile, a successful landing is not expected. ».
↑Jeff Foust, « SpaceX launches SES-9 satellite », SpaceNews, (lire en ligne, consulté le ) :
« After a variety of problems delayed four previous launch attempts, a SpaceX Falcon 9 successfully launched the SES-9 communications satellite March 4, although an attempted landing of the rocket's first stage on a ship was not successful, as expected. »
↑ a et bWilliam Graham, « SpaceX conducts historic Falcon 9 re-flight with SES-10 – Lands booster again », NASASpaceFlight.com, (lire en ligne, consulté le )
« To space and back, in less than nine minutes? Hello, future. »
↑Chris Gebhardt, « SES-10 F9 static fire – SpaceX for history books & first core stage re-flight », NASASpaceFlight.com, (lire en ligne, consulté le )
↑Peter B. de Selding, « SpaceX wins 5 new space station cargo missions in NASA contract estimated at $700 million », SpaceNews, , Slide shows yearly breakdown of NASA missions from 2016 to 2021. (lire en ligne, consulté le )
↑ a et b« SpaceX a essayé de récupérer le nez d'une fusée avec un filet (et ça n'a pas marché) | Journal du Geek », Journal du Geek, (lire en ligne, consulté le )
↑(en-US) Jeff Foust, « Japan’s ispace updates design of lunar lander », sur SpaceNews, (consulté le ) : « Under this revised schedule, assembly of the lander will start in Japan next year, with final assembly, integration and testing work at an ArianeGroup facility in Germany. It will then be shipped to the United States for its Falcon 9 launch in 2022. A second lander mission remains scheduled for 2023. ».