Share to: share facebook share twitter share wa share telegram print page

Pseudoäärellinen kunta

Kunta on pseudoäärellinen jos on kvasiäärellinen ja jokaista äärellisviritteistä absoluuttisesti kokonaista -algebraa kohti on olemassa -algebrahomomorfismi .

Pseudoäärelliselle kunnalle pätee:

on pseudoäärellinen, jos ja vain jos on kvasiäärellinen ja jokaisella :n suhteen absoluuttisesti jaottomalla varistolla on -arvokohta :ssä.

Olkoon kvasiäärellinen kunta, jolle jokaista äärellisviritteistä absoluuttisesti kokonaista -algebraa kohti, missä on äärellinen tai numeroituvasti ääretön, on olemassa -algebrahomomorfismi . Tällöin on pseudoäärellinen.

Lähteet

Ax, James: The elementary theory of finite fields.

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya