NP-täydellisyys

Laskennallisen kompleksisuuden teoriassa NP-täydelliset ongelmat ovat laskennallisesti erittäin vaativia ongelmia. Ne ovat luokan NP (epädeterministisellä Turingin koneella polynomisessa ajassa ratkeavien ongelmien joukko) vaikeimmat ongelmat. Polynomiaikaisen ratkaisun löytyminen NP-täydelliseen ongelmaan deterministisellä Turingin koneella (tai millä tahansa nykyisellä tietokoneella) johtaisi polynomiaikaisen ratkaisun olemassaoloon kaikille muillekin luokan NP ongelmille. Tämä tarkoittaisi sitä, että P=NP, eli kaikki epädeterministisellä Turingin koneella polynomisessa ajassa ratkeavat ongelmat ovat myös deterministisellä Turingin koneella polynomisessa ajassa ratkeavia.

NP-täydellisten ongelmien ratkaisemiseen tunnetaan ainoastaan eksponentiaalisen ajan vieviä algoritmeja. Yleisesti asiantuntijat ovat sitä mieltä, että P≠NP. Tätä ei kuitenkaan ole pystytty todistamaan. 11. elokuuta 2010 Vinay Deolalikar väitti todistaneensa, että P≠NP.[1] Jos P≠NP, avoin ongelma on myös, onko luokan NP kaikille ongelmille olemassa jokin ratkaisu, joka vie vähemmän kuin eksponentiaalisen ajan.

Tunnettuja NP-täydellisiä ongelmia ovat mm. kauppamatkustajan ongelma, Hamiltonin polun tai piirin löytäminen verkosta, lauselogiikan toteutuvuusongelma ja verkon väritys.

Lähteet

Tämä tietotekniikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!