مدل بردلی-تری

مدل برادلی-تری یک مدل احتمال برای نتیجه مقایسه‌های دوتایی بین آیتم‌ها، تیم‌ها یا اشیا است. با توجه به یک جفت آیتم i و j که از یک توزیع خاص گرفته شده است، این احتمال را تخمین می‌زند که مقایسه زوجی i > j درست باشد، این فرض به احتمال زیر صحیح است:

 

 

 

 

(1)

بطوریکه pi یک امتیاز عدد حقیقی مثبت است که به هر یک از iها اختصاص داده شده است. مقایسه i > j می‌توان به صورت " i به j ترجیح داده شده"، "رتبه i بالاتر از j است"، یا " i ,j را می‌زند " بسته به کاربرد، خواند و با استفاده از "قضاوت" امکان ارزیابی ذهنی را فراهم می‌کند.

به عنوان مثال، pi ممکن است نشان دهنده مهارت یک تیم در یک تورنمنت ورزشی باشد و به این معنای احتمال برد i در بازی مقابل j است.[۱] یا pi ممکن است نشان دهنده کیفیت یا مطلوبیت یک محصول تجاری باشد و احتمال این است که مصرف‌کننده محصول i را بر محصول j ترجیح می‌دهد.

مدل بردلی-تری می‌تواند در جهت رو به جلو برای پیش‌بینی نتایج، همان‌طور که توضیح داده شد، استفاده شود، اما معمولاً به صورت معکوس برای استنتاج امتیازات pi با توجه به مجموعه‌ای از نتایج مشاهده شده استفاده می‌شود. در این نوع کاربرد pi نشان دهنده مقداری از قدرت یا کیفیت است و این مدل به ما امکان می‌دهد نقاط قوت را از یک سری مقایسه‌های زوجی تخمین بزنیم. به عنوان مثال، در بررسی ترجیحات شراب، ممکن است برای پاسخ دهندگان دشوار باشد که رتبه‌بندی کاملی از مجموعه بزرگی از شراب‌ها را ارائه دهند، اما برای آنها نسبتاً آسان است که جفت‌های نمونه شراب را با هم مقایسه کنند و بگویند که کدام یک از شراب‌ها بهتر است. بر اساس مجموعه‌ای از این مقایسه‌های زوجی، می‌توان از مدل بردلی-تری برای به دست آوردن رتبه‌بندی کامل شراب‌ها استفاده کرد.

هنگامی که مقادیر امتیاز pi محاسبه شد، می‌توان از مدل در جهت رو به جلو نیز استفاده کرد، به عنوان مثال برای پیش‌بینی نتیجه احتمالی مقایسه‌هایی که هنوز واقعاً رخ نداده‌اند. به عنوان مثال، در مثال بررسی شراب، می‌توان احتمال ترجیح شراب بر شراب را محاسبه کرد، حتی اگر هیچ‌کس در نظرسنجی مستقیماً آن جفت خاص را مقایسه نکرده باشد.

تاریخچه و کاربردها

این مدل به افتخار رالف آ. بردلی و میلتون ای. تری،[۲] که آن را در سال ۱۹۵۲ ارائه کردند، نامگذاری شده است،[۳] اگرچه قبلاً توسط ارنست زرملو در دهه ۱۹۲۰ مورد مطالعه قرار گرفته بود.[۱][۴][۵] کاربردهای این مدل شامل رتبه‌بندی رقبا در مسابقات ورزشی، شطرنج و سایر مسابقات،[۶] رتبه‌بندی محصولات در نظرسنجی‌های مقایسه زوجی انتخاب مصرف‌کننده، تجزیه و تحلیل سلسله مراتب سلطه در جوامع حیوانی و انسانی،[۷] رتبه‌بندی مجلات، رتبه‌بندی مدل‌های هوش مصنوعی،[۸] و برآورد ارتباط اسناد در موتورهای جستجوی ماشینی و غیره است.

تعریف

مدل بردلی-تری را می‌توان به روش‌های مختلفی پارامتری کرد. معادله (1) شاید رایج‌ترین روش باشد، اما تعدادی دیگر نیز وجود دارد. بردلی و تری خود توابع امتیاز نمایی، ، را تعریف کرده‌اند به طوری که

به‌طور معادل می‌توان از یک logit استفاده کرد، به طوری که[۱]

یعنی برای

این فرمول شباهت بین مدل بردلی-تری و رگرسیون لجستیک را برجسته می‌کند. هر دو اساساً از یک مدل واحد، اما به روش‌های مختلف استفاده می‌کنند. در رگرسیون لجستیک فرد معمولاً پارامترهای را می‌داند و تلاش می‌کند تا شکل عملکردی را استنباط کند؛ در رتبه‌بندی تحت مدل بردلی-تری، فرد شکل عملکردی را می‌شناسد و سعی می‌کند پارامترها را استنتاج کند.

تخمین پارامترها

رایج‌ترین کاربرد مدل برادلی-تری، استنتاج مقادیر پارامترهای با توجه به مجموعه ای از نتایج مشاهده شده است مانند برد و باخت در یک مسابقه. ساده‌ترین راه برای تخمین پارامترها ، تخمین حداکثر درستنمایی است، یعنی با به حداکثر رساندن احتمال نتایج مشاهده شده با توجه به مقادیر مدل و پارامتر.

فرض کنید نتایج مجموعه ای از رقابت‌های دوتایی بین گروه خاصی از افراد را می‌دانیم و اجازه دهید wij تعداد دفعاتی باشد که i فردی j را شکست می‌دهد. سپس احتمال این مجموعه از نتایج در مدل بردلی-تری است و درستنمایی پارامتر p = [p1, ..., pn] برابر است با[۱]

Zermelo[۴] نشان داد که این عبارت تنها دارای یک ماکزیمم واحد است که با اگر نسبت به مشتق گرفته و نتیجه را مساوی صفر قرار دهیم خواهیم داشت:

 

 

 

 

(2)

این معادله هیچ راه حل بسته شناخته شده‌ای ندارد، اما زرملو حل آن را با تکرار ساده پیشنهاد کرد. با شروع از هر مجموعه مناسبی از مقادیر اولیه (مثبت) برای ، یکی به‌طور مکرر به روز رسانی را انجام می‌دهد

 

 

 

 

(3)

برای همه i‌ها به نوبت این مقادیر محاسبه می‌شود. پارامترهای به دست آمده تا یک ضریب ثابت، دلخواه هستند، بنابراین پس از محاسبه همه مقادیر جدید باید با تقسیم بر میانگین هندسی آنها نرمال سازی شوند:

 

 

 

 

(4)

این فرایند تخمین، احتمال ورود به سیستم را در هر تکرار بهبود می‌بخشد و تضمین می‌شود که در نهایت به حداکثر منحصر به فرد برسد.[۴][۹] با این حال، همگرایی کند است.[۱][۱۰] اخیراً اشاره شده است[۱۱] که معادله (2) را نیز می‌توان به صورت بازآرایی کرد.

که با تکرار قابل حل است

 

 

 

 

(5)

پس از هر دور به روز رسانی با استفاده از معادله (4) دوباره عادی می‌شود. این تکرار نتایج یکسانی را با خروجی معادله (3) می‌دهد، اما خیلی سریعتر همگرا می‌شود و از این رو معمولاً بر (3) ترجیح داده می‌شود.[۱۱]

نمونه کار شده از روش حل

یک رقابت ورزشی بین چهار تیم را در نظر بگیرید که در مجموع ۲۲ بازی را بین خود انجام می‌دهند. بردهای هر تیم در ردیف‌های جدول زیر و حریفان به صورت ستون آورده شده‌اند:

نتایج
آ ب سی D
آ ۲ ۰ ۱
ب ۳ ۵ ۰
سی ۰ ۳ ۱
D ۴ ۰ ۳

به عنوان مثال، تیم A دو بار تیم B را شکست داده و سه بار به تیم B باخته است و با تیم C اصلاً بازی نکرده است. یک برد و چهار باخت مقابل تیم D دارد.

ما می‌خواهیم نقاط قوت نسبی تیم‌ها را تخمین بزنیم که این کار را با محاسبه پارامترهای انجام می‌دهیم، بطوریکه پارامترهای بالاتر نشان دهنده مهارت بیشتر است. برای انجام این کار، چهار ورودی را در بردار پارامتر p به‌طور دلخواه مقداردهی می‌کنیم، به عنوان مثال مقدار ۱ را به هر تیم اختصاص می‌دهیم: [۱, ۱, ۱, ۱]. سپس معادله (5) را برای به روز رسانی اعمال می‌کنیم، که نتیجه زیر حاصل می‌شود:اکنون (5) را دوباره برای به روز رسانی اعمال می‌کنیم، مطمئن شوید که از مقدار جدید که محاسبه شد استفاده می‌کنید:به‌طور مشابه برای و داریم:سپس تمام پارامترها را با تقسیم بر میانگین هندسی آنها نرمال می‌کنیم برای بدست آوردن پارامترهای تخمینی p = [۰٫۵۱۶, ۱٫۴۱۳, ۰٫۶۷۲, ۲٫۰۴۱].

برای بهبود بیشتر تخمین‌ها، با استفاده از مقادیر p جدید، فرایند را تکرار می‌کنیم؛ مثلاً،با تکرار این فرایند برای پارامترهای باقیمانده و عادی سازی، p = [۰٫۶۷۷, ۱٫۰۳۴, ۰٫۶۲۴, ۲٫۲۸۷] را دریافت می‌کنیم. تکرار ۱۰ بار دیگر همگرایی سریع به سمت حل نهایی p = [۰٫۶۴۰, ۱٫۰۴۳, ۰٫۶۶۰, ۲٫۲۷۰] می‌دهد. این نشان می‌دهد که تیم D قوی‌ترین و تیم B دومین قوی‌تر است، در حالی که تیم‌های A و C تقریباً از نظر قدرت برابر هستند اما کمتر از تیم‌های B و D هستند. حتی اگر همه تیم‌ها با هم بازی نکرده باشند.

جستارهای وابسته

منابع

  1. ۱٫۰ ۱٫۱ ۱٫۲ ۱٫۳ ۱٫۴ Hunter, David R. (2004). "MM algorithms for generalized Bradley–Terry models". The Annals of Statistics. 32 (1): 384–406. CiteSeerX 10.1.1.110.7878. doi:10.1214/aos/1079120141. JSTOR 3448514. خطای یادکرد: برچسب <ref> نامعتبر؛ نام «hunter» چندین بار با محتوای متفاوت تعریف شده است. (صفحهٔ راهنما را مطالعه کنید.).
  2. "Bradley-Terry model". Encyclopedia of Mathematics. Retrieved 18 November 2014.
  3. Bradley, Ralph Allan; Terry, Milton E. (1952). "Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons". Biometrika. 39 (3/4): 324–345. doi:10.2307/2334029. JSTOR 2334029.
  4. ۴٫۰ ۴٫۱ ۴٫۲ Zermelo, Ernst (1929). "Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung". Mathematische Zeitschrift. 29: 436–460. doi:10.1007/BF01180541. خطای یادکرد: برچسب <ref> نامعتبر؛ نام «zermelo» چندین بار با محتوای متفاوت تعریف شده است. (صفحهٔ راهنما را مطالعه کنید.).
  5. Heinz-Dieter Ebbinghaus (2007), Ernst Zermelo: An Approach to His Life and Work, Springer, pp. 268–269, ISBN 978-3-540-49553-6
  6. Shev, A.; Fujii, K.; Hsieh, F.; McCowan, B. (2014). "Systemic testing on Bradley-Terry model against nonlinear ranking hierarchy". PLOS One. 9: e115367. doi:10.1371/journal.pone.0115367. PMC 4274013. PMID 25531899.
  7. Boyd, Robert; Silk, Joan B. (1983). "A method for assigning cardinal dominance ranks". Animal Behaviour. 31: 45–58. doi:10.1016/S0003-3472(83)80172-9.
  8. "Chatbot Arena: New models & Elo system update | LMSYS Org". lmsys.org (به انگلیسی). Retrieved 2024-01-30.
  9. Ford, Jr., L. R. (1957). "Solution of a ranking problem from binary comparisons". American Mathematical Monthly. 64: 28–33. doi:10.1080/00029890.1957.11989117.
  10. Dykstra, Jr., Otto (1956). "A note on the rank analysis of incomplete block designs". Biometrics. 12: 301–306. doi:10.2307/2334029. JSTOR 2334029.
  11. ۱۱٫۰ ۱۱٫۱ Newman, M. E. J. (2023). "Efficient computation of rankings from pairwise comparisons". Journal of Machine Learning Research. 24: 1–25. خطای یادکرد: برچسب <ref> نامعتبر؛ نام «newman» چندین بار با محتوای متفاوت تعریف شده است. (صفحهٔ راهنما را مطالعه کنید.).

Read other articles:

Cantón de Richelieu Cantón Situación del cantón de Richelieu Coordenadas 47°01′27″N 0°22′23″E / 47.02421075, 0.37294888Capital RichelieuEntidad Cantón • País  Francia • Región Centro-Valle de Loira • Departamento Indre y Loira • Distrito ChinonConsejero general Serge Garot (2004-2015)Subdivisiones Comunas 16Superficie   • Total 272 km²Población (2012)   • Total 8187 hab. • Densidad 30,...

 

Agustinus Dedy PrasetyoKomandan Korem 045/Garuda JayaPetahanaMulai menjabat 29 Maret 2023PendahuluUjang Darwis Informasi pribadiLahir25 Agustus 1970 (umur 53)IndonesiaAlma materAkademi Militer (1994)PekerjaanTentaraKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1994—sekarangPangkat Brigadir Jenderal TNISatuanInfanteri (Kopassus)Sunting kotak info • L • B Brigadir Jenderal TNI Agustinus Dedy Prasetyo, S.I.P. (lahir 25 Agustus 1970) adal...

 

Regering-Janson Regeringsleider Paul-Emile Janson Coalitie ​ BWP ​ Katholiek Blok ​ Liberale Partij Zetels Kamer 156 van 202 (24 mei 1936) Premier Paul-Emile Janson Aantreden 24 november 1937 Ontslagnemend 13 mei 1938 Einddatum 15 mei 1938 Voorganger Van Zeeland II Opvolger Spaak I Portaal    België De regering-Janson (24 november 1937 - 15 mei 1938) was een Belgische regering, geleid door de liberaal Paul-Emile Janson. Het was een coalitie van de BWP (70 zetels),...

Xavier Garbajosa Datos personalesNacimiento Toulouse, Alto Garona5 de diciembre de 1976 (46 años)País FranciaNacionalidad(es) Altura 1,85 m (6′ 1″)Peso 89 kg (196 lb)Carrera deportivaDeporte RugbyClub profesionalDebut deportivo 1995(Stade Toulousain)Club RetiradoPosición Fullback, centro o wingRetirada deportiva 2008(Aviron Bayonnais)Debut como entrenador 2014(Stade Rochelais)Equipo entr. Stade RochelaisSelección nacionalSelección FranciaPart. 32Trayectoria Stade Toulo...

 

Resumo Predef. que devolve valor RGB em 6 algarismos hexadecimais pré-definido para uso em diagramas, tabelas, infocaixas, ou listagens — selecionado via argumento. Primariamente vocacionado para partidos políticos (ou similares) de Portugal, este modelo pode servir qualquer outro uso compatível. Uso / exemplos {{RGBpol|PS}} → FF66FF {{RGBpol|XPTO}} → 00FF00 Nota: Esta predef. não devolve a cerquilha (#) que é prefixo habitual de valores expressos em seis algarismos hexadecimais, o...

 

Hypo-Hochhaus Baudenkmal LocalizaciónPaís AlemaniaUbicación Múnich AlemaniaCoordenadas 48°09′00″N 11°37′02″E / 48.150027884948, 11.617183194921Información generalEstado CompletadoUsos OficinasDeclaración 2006Inicio 1975Construcción 1975-1981Inauguración 16 de noviembre de 1981Propietario HypoVereinsbankOcupante HypoVereinsbankAltura de la última planta 114 mDetalles técnicosMaterial concretoPlantas 27Ascensores 8Diseño y construcciónArquitecto Walther und...

كريفيتز   الإحداثيات 45°14′02″N 88°00′25″W / 45.2339°N 88.0069°W / 45.2339; -88.0069  تقسيم إداري  البلد الولايات المتحدة[1][2]  التقسيم الأعلى مقاطعة مارينيت  خصائص جغرافية  المساحة 4.260329 كيلومتر مربع (1 أبريل 2010)  ارتفاع 207 متر  عدد السكان  عدد السكان 984 (1

 

جاغيرأباد جاگيراباد  - قرية -  تقسيم إداري البلد  إيران[1] المحافظة لرستان المقاطعة أليغودرز الناحية ناحية زاز وماهرو القسم الريفي قسم ماهرو الريفي (مقاطعة أليغودرز) إحداثيات 33°03′12″N 49°00′24″E / 33.05333°N 49.00667°E / 33.05333; 49.00667 السكان التعداد السكاني 20 ن

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أغسطس 2023) طرد (بريد)معلومات عامةصنف فرعي من عنصر بريد لديه جزء أو أجزاء حمولةmoving & shipping box (en) تعديل - تعديل مصدري - تعد

NGC 735   الكوكبة المثلث  رمز الفهرس NGC 735 (الفهرس العام الجديد)UGC 1411 (فهرس أوبسالا العام)PGC 7282 (فهرس المجرات الرئيسية)2MASX J01563802+3410366 (Two Micron All Sky Survey, Extended source catalogue)IRAS F01537+3356 (IRAS)MCG+06-05-058 (فهرس المجرات الموروفولوجي)UZC J015638.0+341036 (فهرس زفيكي المحدّث)Z 0153.7+3356 (فهرس المجرات وعناقيد المجرا

 

رحلة خاصة إلى الفضاء رحلات الفضاء الخاصة هي رحلات الفضاء أو تطوير تكنولوجيا رحلات الفضاء التي يتم إجراؤها ودفع تكاليفها من قبل كيان آخر غير وكالة حكومية. في العقود الأولى من عصر الفضاء، كانت وكالات الفضاء الحكومية في الاتحاد السوفيتي والولايات المتحدة رائدة في تكنولوجيا ...

 

Super Bowl LVII 1 2 3 4 Gesamt Eagles 7 17 3 8 35 Chiefs 7 7 7 17 38 Datum 12. Februar 2023 Stadion State Farm Stadium Stadt Glendale, Arizona MVP Patrick Mahomes Nationalhymne Chris Stapleton Referee Carl Cheffers Halbzeitshow Rihanna Besucherzahl 67.827 Fernsehübertragung Network Fox Deutschland ProSieben und DAZN Österreich Puls 4 und DAZN Chronik ‹ Super Bowl LVI Super Bowl LVIII › Der Super Bowl LVII war der 57. Super Bowl, das Endspiel der Saison 2022 der National Footba...

A Community Dial Office (CDO) was a small Class 5 telephone exchange in a rural area. These most often provided capacity for 1,000 or fewer customers and were designed for unattended operation. CDOs could be step by step, all relay or crossbar. Many offices provided four-digit local dialling[1] to small rural communities where a call outside the local exchange was long distance. Initial deployments were based on step-by-step equipment such as the Western Electric 350A (first deployed ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. ElloJenis situsJejaring sosialBahasaInggrisPenciptaPaul BudnitzSitus webwww.ello.coKomersialTidakDaftar akunDiperlukan untuk memposting, mengikuti, atau diikutiPengguna1 Juta +DiluncurkanMaret 2014 (2014-03)StatusAktif Ello adalah sebuah layanan j...

 

Former island of Lagos island This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) Civic Centre, Victoria Island Victoria Island (VI)...

Confucionismo História antiga Período da Primavera e Outono Confúcio Período dos Estados Combatentes Mêncio Xunzi Han Ocidental Dong Zhongshu Gongsun Hong Conceitos fundamentais Tian Ren Yi Li Xiao Zhong Escolas Neo-Confucionismo Novo confucionismo Escola Taigu Escolas hermenêuticas: Textos antigos Novo Texto Confucionismo Confucionismo por país Confucionismo na Indonésia Confucionismo coreano Confucionismo japonês Textos confucionistas Ruzang Quatro livros: Analectos Doutrina da mé...

 

Portrait of Seurat by Maximilien Luce This is a list of notable paintings by Georges Seurat (2 December 1859 - 29 March 1891). He is a Neo-Impressionist painter and together with Paul Signac noted for being the inventor of pointillism.[1] The listing follows the 1980 book Georges Seurat and uses its catalogue numbers.[2] Paintings Image YearTitle Location No.[2]H x W in cmWikimedia 1859Born in Paris 1878Angélique[3] Norton Simon Museum, Pasadena 00181.4 × 65M...

 

この記事には独自研究が含まれているおそれがあります。問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2011年5月) 向井荒太の動物日記〜愛犬ロシナンテの災難〜ジャンル テレビドラマ企画 海老克哉吉田智子福田卓郎福田千津子西本洋子武田菜穂脚本 吉田智子福田卓郎福田千津子西本洋子武田菜穂演出 大谷太...

American pioneer who discovered gold in California in 1848 For other people named James W. Marshall, see James W. Marshall (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: James W. Marshall – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this templa...

 

L'edificio del campo di transito di Malines, come si presenta oggi Arrivo di prigionieri nel cortile della caserma nel 1942 Carro ferroviario originale usato per i trasporti e ora custodito a Fort Breendonk Il campo di internamento e transito di Malines, dal nome della cittadina belga di Malines (in neerlandese: Mechelen) nel quale era situato, fu stabilito nel luglio del 1942 dalle autorità naziste quale principale campo di transito per le deportazioni degli ebrei dal Belgio. Il campo di Ma...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!