Factor primo

En teoría de números, los factores primos de un número entero son los números primos divisores exactos de ese número entero . El proceso de búsqueda de esos divisores se denomina factorización de enteros, o factorización en números primos.

Para un factor primo es p de n, de la multiplicidad de p es el máximo exponente a para el cual pa es un divisor de n. La factorización de un número entero es una lista de los factores primos de ese número, junto con su multiplicidad. El Teorema fundamental de la Aritmética establece que todo número entero positivo tiene una factorización de primos única.

Para un número entero positivo n, el número de factores primos de n y la suma de los factores primos de n sin contar su multiplicidad son ejemplos de funciones aritméticas de n que son funciones aditivas pero no «completamente aditivas».

Ejemplos

  • Los factores primos de 6 son 2 y 3 (6 = 2 x 3). Ambos tienen multiplicidad 1.
  • 5 solo tiene un factor primo: él mismo (ya que 5 es primo). Tiene una multiplicidad 1.
  • 100 tiene dos factores primos: 2 y 5 (100 = 22 x 52). Ambos tienen multiplicidad 2.
  • 2, 4, 8, 16, etc. solo tienen un factor primo: 2. (2 es primo, 4 = 22, 8 = 23, etc.)
  • Los factores primos de 10 son 2 y 5 (10 = 2 x 5).

Funciones ω(n) y Ω(n)

Las funciones ω(n) y Ω(n) representan el número de factores primos sin repetición y con repetición, por lo que . Más específicamente, la función ω(n) representa el número de factores primos «distintos» de n, se define como:[1]

donde #{.} indica el cardinal del conjunto, en este caso la cantidad de factores primos distintos de n. La función Ω(n) representa el «número total» de factores primos.

Por ejemplo, , así pues: y .

ω(n) para n = 1, 2, 3, ... es 0, 1, 1, 1, 1, 2, 1, 1, 1, ... (sucesión A001221 en OEIS)
Ω(n) para n = 1, 2, 3, ... es 0, 1, 1, 2, 1, 2, 1, 3, 2, ... (sucesión A001222 en OEIS)

Aplicaciones

Determinar el número de factores primos de un número es un ejemplo de problema matemático frecuentemente empleado para asegurar la seguridad de los sistemas criptográficos: se cree que este problema requiere un tiempo superior al tiempo polinómico en el número de dígitos implicados; de hecho, es relativamente sencillo construir un problema que precisaría más tiempo que la Edad del Universo si se intentase calcular con los ordenadores actuales utilizando algoritmos actuales.

Dos números enteros positivos son coprimos si y solo si no tienen factores primos en común. El número 1 es coprimo de todos los números enteros, incluso de sí mismo. Esto se debe a que no tiene factores primos: es el producto vacío. El Algoritmo de Euclides puede ser utilizado para determinar si dos números enteros son coprimos sin saber sus factores primos; el algoritmo funciona en un tiempo polinomial en el número de dígitos implicados.

Véase también

Referencias

  1. Jiahai Kan (1996). «On the number-theoretic functions ν(n) and Ω(n)». Acta Arithmetica LXXVIII (1). p. 1. 

Enlaces externos

Read other articles:

Model contest on television For the most recent cycle, see Germany's Next Topmodel (season 18). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Germany's Next Topmodel – news ...

 

Perang Kemerdekaan Peru Perang Kemerdekaan Peru terdiri dari serangkaian konflik militer di Peru bermula dari penaklukan ulang militer wali raja Abascal pada 1811 dalam pertempuran Guaqui, disusul oleh kekalahan definitif Pasukan Spanyol pada 1824 dalam pertempuran Ayacucho, dan berpuncak pada 1826, dengan Pengepungan Callao.[1] Perang kemerdekaan tersebut terjadi berlatar kebangkitan 1780-1781 oleh pemimpin penduduk asli Túpac Amaru II dan lepasnya kawasan Peru Hilir dan Río de la ...

 

Christian Reformed confessional document 1563 edition The Heidelberg Catechism (1563), one of the Three Forms of Unity, is a Protestant confessional document taking the form of a series of questions and answers, for use in teaching Calvinist Christian doctrine. It was published in 1563 in Heidelberg, Germany. Its original title translates to Catechism, or Christian Instruction, according to the Usages of the Churches and Schools of the Electoral Palatinate. Commissioned by the prince-elector ...

Sexual act involving internal ejaculation Semen flowing out of a woman's vagina after sexual activity without a condom. A creampie (also known as internal ejaculation, and, typically in same-sex contexts, as a breeding[1]) is a sexual act, commonly featured in hardcore pornography, in which a man ejaculates inside his partner's vagina or anus without the use of a condom, resulting in visible seeping or dripping of semen from the orifice.[2][3][4] Use in pornogr...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Perekat adalah bahan yang mampu mengikat dua permukaan atau lebih dengan ikatan yang kuat dan permanen. Secara umum perekat adalah bahan yang memi...

 

Hella S. Haasse pada tanggal 19 Juli 2007 Hélène Hella Serafia Haasse (2 Februari 1918 – 29 September 2011) adalah salah satu penulis Belanda kontemporer yang terpenting. Ia sering disebut-sebut sebagai Sastrawati Tua Besar dari Belanda. Banyak karyanya yang berupa novel sejarah, selain esai, otobiografi, cerita pendek, dsb. Beberapa karyanya seperti Oeroeg, berlatar di Hindia Belanda, tempatnya lahir dan tinggal selama 20 tahun pertama kehidupannya, kecuali antara tahun 192...

Indonesian politician (1938–2005) Raja Inal Siregar14th Governor of North SumatraIn office13 June 1988 – 15 June 1998PresidentSoehartoB. J. HabibiePreceded byKaharuddin NasutionSucceeded byRizal Nurdin Personal detailsBorn(1938-03-05)5 March 1938Medan, Dutch East IndiesDied5 September 2005(2005-09-05) (aged 67)Medan, IndonesiaNationalityIndonesianSpouseYuniar PaneChildrenHotmaria SiregarRiri Rosalina SiregarYuriandi SiregarSiri Yulita Siregar Raja Inal Siregar (5 March 1...

 

Sporting event delegationSwitzerland at the1952 Summer OlympicsIOC codeSUINOCSwiss Olympic AssociationWebsitewww.swissolympic.ch (in German and French)in HelsinkiCompetitors157 (148 men and 9 women) in 17 sportsFlag bearer Walter LehmannMedalsRanked 11th Gold 2 Silver 6 Bronze 6 Total 14 Summer Olympics appearances (overview)189619001904190819121920192419281932193619481952195619601964196819721976198019841988199219962000200420082012201620202024Other related appearances1906 Intercalat...

 

Kereta salju dengan dua kuda. Kereta salju yang ditarik seekor kuda. Kereta salju[a] atau kereta seluncur (bahasa Inggris: sled, sledge, atau sleigh) adalah kendaraan yang bergerak dengan cara meluncur di atas salju atau es. Kendaraan ini digunakan sebagai sarana transportasi. Kereta salju tidak memiliki roda, melainkan dilengkapi alas luncur atau memiliki bagian dasar yang mulus sehingga dapat meluncur. Meskipun demikian, kendaraan ini sering juga dipakai di atas permukaan lumpur, ru...

Sports reporter Michelle BeadleBeadle in 2010BornMichelle Denise Beadle (1975-10-23) October 23, 1975 (age 48)ItalyAlma materUniversity of Texas at San AntonioOccupation(s)Television host, sideline reporterYears active1997–presentNotable credit(s)SportsNationWinners Bracket Michelle Denise Beadle (born October 23, 1975) is an American sports reporter and host who is part of the San Antonio Spurs broadcast team.[1] Beadle was formerly the co-host of the ESPN morning sp...

 

Iranian physicist This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Reza Mansouri – news · newspapers · books · scholar · JSTOR (June 2015) (Learn how and when to remove this template message) Man...

 

Schumann in 1839, one year after composing the Novelletten The Novelletten, Op. 21, is a set of eight pieces for solo piano, written by Robert Schumann in 1838.[1] This composition is dedicated to Adolf von Henselt. Background The Novelletten were composed during February 1838, a period of great struggle for the composer.[2] Schumann originally intended the eight pieces to be performed together as a group, though they are often performed separately. This set of pieces is an ex...

Mathematical result of division For other uses, see Quotient (disambiguation). The quotient of 12 apples by 3 apples is 4. Arithmetic operationsvte Addition (+) term + term summand + summand addend + addend augend + addend } = {\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\...

 

[1]População 1,216 bilhões (14%) Estatísticas PIB (em trilhões) Crescimento anual do PIB 5,16% (2004-2006) Renda per capita 44,7% Milionários 0,1 milhões (0,01%) Dívida externa 60,7% (1998) (2007) FMI 25,5% Pagamento da dívida externa 4,2% (2007) FMI 3,0% Pessoas que ganham menos de 1 dólar por dia 36,2% A Economia da África consiste na agricultura e nos recursos dos povos da África. Embora algumas partes do continente tenham conseguido ganhos significativos nos últimos anos, dos...

 

Maldivian web series HanaaScreenplay byAminath RinazaStory byAminath RinazaDirected byAmjad IbrahimStarringAli AzimAminath NooraIbrahim JihadAli ShameelMusic byAyyuman ShareefCountry of originMaldivesOriginal languageDhivehiNo. of seasons1No. of episodes13ProductionProducersAishath Kainaa Hussain MunawwarAhmed Kiyaan Hussain MunawwarKayaan Hussain MunawwarCinematographyHussain MunawwarEditorAli RasheedProduction companyKid ProductionOriginal releaseReleaseFebruary 27 (2020-02-27) ...

2001 single by Marilyn Manson The Fight SongSingle by Marilyn Mansonfrom the album Holy Wood (In the Shadow of the Valley of Death) ReleasedFebruary 2, 2001Recorded2000GenreHard rock, glam rockLength2:53LabelInterscopeSongwriter(s) John Lowery Marilyn Manson Producer(s) Dave Sardy Marilyn Manson Marilyn Manson singles chronology Disposable Teens (2000) The Fight Song (2001) The Nobodies (2001) The Fight Song is a song by American rock band Marilyn Manson. It was released in 2001 as the second...

 

German politician Ernst MajonicaMember of the BundestagIn office19 November 1950 – 22 September 1972 Personal detailsBorn(1920-10-29)29 October 1920Died21 July 1997(1997-07-21) (aged 76)NationalityGermanPolitical partyCDU Ernst Majonica (29 October 1920 – 21 July 1997) was a German politician of the Christian Democratic Union (CDU) and former member of the German Bundestag.[1] Life Majonica joined the CDU and the Junge Union (JU) in 1946. From 1950 to 1955, he wa...

 

Type of dance Ballroom tango is a ballroom dance that branched away from its original Argentine roots by allowing European, American, Hollywood, and competitive influences into the style and execution of the dance. The present day ballroom tango is divided into two disciplines: American Style and International Style. Both styles may be found in social and competitive dances, but the International version is more globally accepted as a competitive style. Both styles share a closed dance positi...

Гай Веттій Грат СабініанНародився близько 180РимПомер близько 225Підданство Римська імперіяДіяльність політикПосада консулТермін 221 рікПопередник Цезар Марк Аврелій Антонін АвгустНаступник Цезар Марк Аврелій Антонін АвгустБатько Гай Веттій Грат Сабініан СтаршийМати ...

 

Bomb designed to bounce to a target across water in a calculated manner to avoid obstacles Not to be confused with skip bombing or bounding mine. For the bounding mine nicknamed Bouncing Betty, see S-mine. Vickers Type 464code name: Upkeep Upkeep bouncing bomb at the Imperial War Museum DuxfordTypeConventional (depth charge)Place of originUnited KingdomService historyIn service16–17 May 1943(Operation Chastise)Used byNo. 617 Squadron RAFWarsWorld War IIProduction history...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!