Yambo is a computer software package for studying many-body theory aspects of solids and molecule systems.[1][2] It calculates the excited state properties of physical systems from first principles, e.g., from quantum mechanics law without the use of empirical data. It is an open-source software released under the GNU General Public License (GPL). However the main development repository is private and only a subset of the features available in the private repository are cloned into the public repository and thus distributed.[3]
Yambo can calculate:
Yambo can treat molecules and periodic systems (both metallic an insulating) in three dimensions (crystalline solids) two dimensions (surfaces) and one dimension (e.g., nanotubes, nanowires, polymer chains). It can also handle collinear (i.e., spin-polarized wave functions) and non-collinear (spinors) magnetic systems.
Typical systems are of the size of 10-100 atoms, or 10-400 electrons, per unit cell in the case of periodic systems.
Yambo relies on many-body perturbation theory and time-dependent density functional theory.[13][14] Quasiparticle energies are calculated within the GW approximation[15] for the self energy. Optical properties are calculated either by solving the Bethe–Salpeter equation[16][17] or by using the adiabatic local density approximation within time-dependent density functional theory.
Yambo uses a plane waves basis set to represent the electronic (single-particle) wavefunctions. Core electrons are described with norm-conserving pseudopotentials. The choice of a plane-wave basis set enforces the periodicity of the systems. Isolated systems, and systems that are periodic in only one or two directions can be treated by using a supercell approach. For such systems Yambo offers two numerical techniques for the treatment of the Coulomb integrals: the cut-off[18] and the random-integration method.
The Yambo team provides a wiki web-page with a list of tutorials and lecture notes. On the yambo web-site there is also a list of all thesis done with the code.
Part of the YAMBO code is kept under a private repository. These are the features implemented and not yet distributed: