Uranium dioxide

Uranium dioxide
Names
IUPAC names
Uranium dioxide
Uranium(IV) oxide
Other names
Urania
Uranous oxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.014.273 Edit this at Wikidata
EC Number
  • 215-700-3
RTECS number
  • YR4705000
UNII
  • InChI=1S/2O.U
    Key: FCTBKIHDJGHPPO-UHFFFAOYSA-N
  • O=[U]=O
Properties
UO2
Molar mass 270.03 g/mol
Appearance black powder
Density 10.97 g/cm3
Melting point 2,865 °C (5,189 °F; 3,138 K)
insoluble
Structure
Fluorite (cubic), cF12
Fm3m, No. 225
a = 547.1 pm [1]
Tetrahedral (O2−); cubic (UIV)
Thermochemistry
78 J·mol−1·K−1[2]
−1084 kJ·mol−1[2]
Hazards
GHS labelling:
GHS06: ToxicGHS08: Health hazardGHS09: Environmental hazard
Danger
H300, H330, H373, H410
P260, P264, P270, P271, P273, P284, P301+P310, P304+P340, P310, P314, P320, P321, P330, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazard RA: Radioactive. E.g. plutonium
4
0
0
Special hazard RA: Radioactive. E.g. plutonium
Flash point N/A
Safety data sheet (SDS) ICSC 1251
Related compounds
Other anions
Uranium(IV) sulfide
Uranium(IV) selenide
Other cations
Protactinium(IV) oxide
Neptunium(IV) oxide
Related uranium oxides
Triuranium octoxide
Uranium trioxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Uranium dioxide or uranium(IV) oxide (UO2), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reactors. A mixture of uranium and plutonium dioxides is used as MOX fuel. Prior to 1960, it was used as yellow and black color in ceramic glazes and glass.

Production

Uranium dioxide is produced by reducing uranium trioxide with hydrogen.

UO3 + H2 → UO2 + H2O at 700 °C (973 K)

This reaction plays an important part in the creation of nuclear fuel through nuclear reprocessing and uranium enrichment.

Chemistry

Structure

The solid is isostructural with (has the same structure as) fluorite (calcium fluoride), where each U is surrounded by eight O nearest neighbors in a cubic arrangement. In addition, the dioxides of cerium, thorium, and the transuranic elements from neptunium through californium have the same structures.[3] No other elemental dioxides have the fluorite structure. Upon melting, the measured average U-O coordination reduces from 8 in the crystalline solid (UO8 cubes), down to 6.7±0.5 (at 3270 K) in the melt.[4] Models consistent with these measurements show the melt to consist mainly of UO6 and UO7 polyhedral units, where roughly 23 of the connections between polyhedra are corner sharing and 13 are edge sharing.[4]

Oxidation

Uranium dioxide is oxidized in contact with oxygen to the triuranium octaoxide.

3 UO2 + O2 → U3O8 at 700 °C (973 K)

The electrochemistry of uranium dioxide has been investigated in detail as the galvanic corrosion of uranium dioxide controls the rate at which used nuclear fuel dissolves. See spent nuclear fuel for further details. Water increases the oxidation rate of plutonium and uranium metals.[5][6]

Carbonization

Uranium dioxide is carbonized in contact with carbon, forming uranium carbide and carbon monoxide.

.

This process must be done under an inert gas as uranium carbide is easily oxidized back into uranium oxide.

Uses

Nuclear fuel

UO2 is used mainly as nuclear fuel, specifically as UO2 or as a mixture of UO2 and PuO2 (plutonium dioxide) called a mixed oxide (MOX fuel), in the form of fuel rods in nuclear reactors.

The thermal conductivity of uranium dioxide is very low when compared with uranium, uranium nitride, uranium carbide and zirconium cladding material. This low thermal conductivity can result in localised overheating in the centres of fuel pellets. The graph below shows the different temperature gradients in different fuel compounds. For these fuels, the thermal power density is the same and the diameter of all the pellets are the same.[citation needed]

The thermal conductivity of zirconium metal and uranium dioxide as a function of temperature

Color for glass ceramic glaze

Geiger counter (kit without housing) audibly reacting to an orange Fiestaware shard.

Uranium oxide (urania) was used to color glass and ceramics prior to World War II, and until the applications of radioactivity were discovered this was its main use. In 1958 the military in both the US and Europe allowed its commercial use again as depleted uranium, and its use began again on a more limited scale. Urania-based ceramic glazes are dark green or black when fired in a reduction or when UO2 is used; more commonly it is used in oxidation to produce bright yellow, orange and red glazes.[7] Orange-colored Fiestaware is a well-known example of a product with a urania-colored glaze. Uranium glass is pale green to yellow and often has strong fluorescent properties. Urania has also been used in formulations of enamel and porcelain. It is possible to determine with a Geiger counter if a glaze or glass produced before 1958 contains urania.

Other uses

Prior to the realisation of the harmfulness of radiation, uranium was included in false teeth and dentures, as its slight fluorescence made the dentures appear more like real teeth in a variety of lighting conditions.[citation needed]

Depleted UO2 (DUO2) can be used as a material for radiation shielding. For example, DUCRETE is a "heavy concrete" material where gravel is replaced with uranium dioxide aggregate; this material is investigated for use for casks for radioactive waste. Casks can be also made of DUO2-steel cermet, a composite material made of an aggregate of uranium dioxide serving as radiation shielding, graphite and/or silicon carbide serving as neutron radiation absorber and moderator, and steel as the matrix, whose high thermal conductivity allows easy removal of decay heat.[citation needed]

Depleted uranium dioxide can be also used as a catalyst, e.g. for degradation of volatile organic compounds in gaseous phase, oxidation of methane to methanol, and removal of sulfur from petroleum. It has high efficiency and long-term stability when used to destroy VOCs when compared with some of the commercial catalysts, such as precious metals, TiO2, and Co3O4 catalysts. Much research is being done in this area, DU being favoured for the uranium component due to its low radioactivity.[8]

The use of uranium dioxide as a material for rechargeable batteries is being investigated. The batteries could have high power density and potential of 4.7 V per cell. Another investigated application is in photoelectrochemical cells for solar-assisted hydrogen production where UO2 is used as a photoanode. In earlier times, uranium dioxide was also used as heat conductor for current limitation (URDOX-resistor), which was the first use of its semiconductor properties.[citation needed]

Uranium dioxide displays strong piezomagnetism in the antiferromagnetic state, observed at cryogenic temperatures below 30 kelvins. Accordingly, the linear magnetostriction found in UO2 changes sign with the applied magnetic field and exhibits magnetoelastic memory switching phenomena at record high switch-fields of 180,000 Oe.[9] The microscopic origin of the material magnetic properties lays in the face-centered-cubic crystal lattice symmetry of uranium atoms, and its response to applied magnetic fields.[10]

Semiconductor properties

The band gap of uranium dioxide is comparable to those of silicon and gallium arsenide, near the optimum for efficiency vs band gap curve for absorption of solar radiation, suggesting its possible use for very efficient solar cells based on Schottky diode structure; it also absorbs at five different wavelengths, including infrared, further enhancing its efficiency. Its intrinsic conductivity at room temperature is about the same as of single crystal silicon.[11]

The dielectric constant of uranium dioxide is about 22, which is almost twice as high as of silicon (11.2) and GaAs (14.1). This is an advantage over Si and GaAs in the construction of integrated circuits, as it may allow higher density integration with higher breakdown voltages and with lower susceptibility to the CMOS tunnelling breakdown.

The Seebeck coefficient of uranium dioxide at room temperature is about 750 μV/K, a value significantly higher than the 270 μV/K of thallium tin telluride (Tl2SnTe5) and thallium germanium telluride (Tl2GeTe5) and of bismuth-tellurium alloys, other materials promising for thermoelectric power generation applications and Peltier elements.

The radioactive decay impact of the 235U and 238U on its semiconducting properties was not measured as of 2005. Due to the slow decay rate of these isotopes, it should not meaningfully influence the properties of uranium dioxide solar cells and thermoelectric devices, but it may become an important factor for VLSI chips. Use of depleted uranium oxide is necessary for this reason. The capture of alpha particles emitted during radioactive decay as helium atoms in the crystal lattice may also cause gradual long-term changes in its properties.[citation needed]

The stoichiometry of the material dramatically influences its electrical properties. For example, the electrical conductivity of UO1.994 is orders of magnitude lower at higher temperatures than the conductivity of UO2.001[citation needed].

Uranium dioxide, like U3O8, is a ceramic material capable of withstanding high temperatures (about 2300 °C, in comparison with at most 200 °C for silicon or GaAs), making it suitable for high-temperature applications like thermophotovoltaic devices.

Uranium dioxide is also resistant to radiation damage, making it useful for rad-hard devices for special military and aerospace applications.

A Schottky diode of U3O8 and a p-n-p transistor of UO2 were successfully manufactured in a laboratory.[12]

Toxicity

Uranium dioxide is known to be absorbed by phagocytosis in the lungs.[13]

See also

References

  1. ^ Leinders, Gregory; Cardinaels, Thomas; Binnemans, Koen; Verwerft, Marc (2015). "Accurate lattice parameter measurements of stoichiometric uranium dioxide". Journal of Nuclear Materials. 459: 135–42. Bibcode:2015JNuM..459..135L. doi:10.1016/j.jnucmat.2015.01.029. S2CID 97183844.
  2. ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A23. ISBN 978-0-618-94690-7.
  3. ^ Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W. M.; Stocks, G. M. (2010-01-07). "Electronic structure and ionicity of actinide oxides from first principles". Physical Review B. 81 (4): 045108. arXiv:0908.1806. Bibcode:2010PhRvB..81d5108P. doi:10.1103/PhysRevB.81.045108. S2CID 118365366.
  4. ^ a b Skinner, L. B.; Benmore, C. J.; Weber, J. K. R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L. G.; Guthrie, M.; Leibowitz, L.; Parise, J. B. (2014). "Molten uranium dioxide structure and dynamics". Science. 346 (6212): 984–7. Bibcode:2014Sci...346..984S. doi:10.1126/science.1259709. OSTI 1174101. PMID 25414311. S2CID 206561628.
  5. ^ Haschke, John M; Allen, Thomas H; Morales, Luis A (1999). "Reactions of Plutonium Dioxide with Water and Oxygen-Hydrogen Mixtures: Mechanisms for Corrosion of Uranium and Plutonium" (PDF). doi:10.2172/756904. Retrieved 2009-06-06. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Haschke, John M; Allen, Thomas H; Morales, Luis A (2001). "Reactions of plutonium dioxide with water and hydrogen–oxygen mixtures: Mechanisms for corrosion of uranium and plutonium". Journal of Alloys and Compounds. 314 (1–2): 78–91. doi:10.1016/S0925-8388(00)01222-6.
  7. ^ Örtel, Stefan. Uran in der Keramik. Geschichte - Technik - Hersteller.
  8. ^ Hutchings, Graham J.; Heneghan, Catherine S.; Hudson, Ian D.; Taylor, Stuart H. (1996). "Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds". Nature. 384 (6607): 341–3. Bibcode:1996Natur.384..341H. doi:10.1038/384341a0. S2CID 4299921.
  9. ^ Jaime, Marcelo; Saul, Andres; Salamon, Myron B.; Zapf, Vivien; Harrison, Neil; Durakiewicz, Tomasz; Lashley, Jason C.; Andersson, David A.; Stanek, Christopher R.; Smith, James L.; Gofryk, Krysztof (2017). "Piezomagnetism and magnetoelastic memory in uranium dioxide". Nature Communications. 8 (1): 99. Bibcode:2017NatCo...8...99J. doi:10.1038/s41467-017-00096-4. PMC 5524652. PMID 28740123.
  10. ^ Antonio, Daniel J.; Weiss, Joel T.; Shanks, Katherine S.; Ruff, Jacob P.C.; Jaime, Marcelo; Saul, Andres; Swinburne, Thomas; Salamon, Myron B.; Lavina, Barbara; Koury, Daniel; Gruner, Sol M.; Andersson, David A.; Stanek, Christopher R.; Durakiewicz, Tomasz; Smith, James L.; Islam, Zahir; Gofryk, Krysztof (2021). "Piezomagnetic switching and complex phase equilibria in uranium dioxide". Communications Materials. 2 (1): 17. arXiv:2104.06340. Bibcode:2021CoMat...2...17A. doi:10.1038/s43246-021-00121-6. S2CID 231812027.
  11. ^ An, Yong Q.; Taylor, Antoinette J.; Conradson, Steven D.; Trugman, Stuart A.; Durakiewicz, Tomasz; Rodriguez, George (2011). "Ultrafast Hopping Dynamics of 5f Electrons in the Mott Insulator UO2 Studied by Femtosecond Pump-Probe Spectroscopy". Physical Review Letters. 106 (20): 207402. Bibcode:2011PhRvL.106t7402A. doi:10.1103/PhysRevLett.106.207402. PMID 21668262.
  12. ^ Meek, Thomas T.; von Roedern, B. (2008). "Semiconductor devices fabricated from actinide oxides". Vacuum. 83 (1): 226–8. Bibcode:2008Vacuu..83..226M. doi:10.1016/j.vacuum.2008.04.005.
  13. ^ Principles of Biochemical Toxicology. Timbrell, John. PA 2008 ISBN 0-8493-7302-6[page needed]

Further reading

Read other articles:

1960 film by Charles Vidor, George Cukor Song Without EndVHS coverDirected byCharles VidorGeorge CukorWritten byOscar MillardProduced byWilliam GoetzStarringDirk BogardeCapucineGeneviève PageCinematographyJames Wong HoweEdited byWilliam LyonMusic byMorris StoloffHarry SukmanFranz LisztDistributed byColumbia PicturesRelease date August 11, 1960 (1960-08-11) Running time141 min.CountryUnited StatesLanguageEnglishBudget$3.5 million[1]Box office$1,500,000 (US and Canada re...

 

У этого термина существуют и другие значения, см. Башкирский. Башкирский язык Самоназвание башҡорт теле,башҡортса Страны Россия, Украина[1], Казахстан[2], Узбекистан[3] Регионы Башкортостан, Челябинская область, Оренбургская область, Тюменская область, Свердлов

 

2019 book by Robert Caro For other uses, see Working. Working: Researching, Interviewing, Writing First edition (US)AuthorRobert CaroSubjectMemoirPublisherKnopf (US)Bodley Head (UK)Publication dateApril 9, 2019 (2019-04-09)Pages240ISBN9780525656340 External videos C-SPAN interview with the author, 2019 Working: Researching, Interviewing, Writing is a memoir by biographer Robert Caro about the craft of biographical research and writing. Further reading Detrow, Scott (April 8, 20...

Stasiun Rangkasbitung R22LM01 Kondisi peron Stasiun Rangkasbitung.Nama lainStasiun RangkasLokasiJalan Stasiun Rangkasbitung No.1Muara Ciujung Timur, Rangkasbitung, Lebak, Banten 42314IndonesiaKetinggian+22 mOperatorKereta Api Indonesia Daerah Operasi I Jakarta KAI CommuterLetak dari pangkal km 79+694 lintas Angke–Tanah Abang–Rangkasbitung–Merak km 0+000 lintas Rangkasbitung–Labuan[1] Jumlah peron3 (satu peron sisi dan dua peron pulau bertangga tinggi)Jumlah jalur4 jalur 1: sep...

 

Ein FW3/22 Pillbox-Bunker nahe dem Kennet-und-Avon-Kanal Die General Headquarters Line (auch als GHQ Line bezeichnet) war eine britische, während des Zweiten Weltkrieges angelegte Verteidigungslinie. Diese als Hauptverteidigungsstellung angelegte Linie sollte den Großraum London und das mittelenglische Industriegebiet schützen. Dieses Verteidigungssystem beginnt am Nordende der Taunton Stop Line nahe dem Ort Highbridge in Somerset, verläuft dann längs des Flusses Brue und des Kennet-und-...

 

Wappen Deutschlandkarte 53.459779.4481119Koordinaten: 53° 28′ N, 9° 27′ O Basisdaten Bundesland: Niedersachsen Landkreis: Stade Samtgemeinde: Harsefeld Höhe: 19 m ü. NHN Fläche: 26,5 km2 Einwohner: 2126 (31. Dez. 2022)[1] Bevölkerungsdichte: 80 Einwohner je km2 Postleitzahl: 21698 Vorwahl: 04164 Kfz-Kennzeichen: STD Gemeindeschlüssel: 03 3 59 005 Gemeindegliederung: 2 Ortsteile Adresse der Gemeindeverwaltu...

سيرهي بويكو   معلومات شخصية الميلاد 30 يونيو 1977 (46 سنة)  بيلهورود دنيستروفسكيي  الطول 1.82 م (5 قدم 11 1⁄2 بوصة) مركز اللعب حارس مرمى الجنسية أوكرانيا  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1995–1996 [[FC DnistrovetsBilhorod-Dnistrovskyi|FC DnistrovetsBilhorod-Dnistrovskyi]]  [لغات أخرى]‏...

 

ألكساندرة كورنهاوزر فريزر (بالسلوفينية: Aleksandra Kornhauser Frazer)‏    معلومات شخصية اسم الولادة (بالسلوفينية: Aleksandra Caleari)‏  الميلاد 26 سبتمبر 1926  شكوفجا لوكا  الوفاة 17 مايو 2020 (93 سنة) [1]  ليوبليانا  مواطنة يوغوسلافيا (1926–1992) سلوفينيا (1992–2020)  عضوة في الأكاديمية ا

 

لويس كوبيلا (بالإسبانية: Luis Cubilla)‏    معلومات شخصية الميلاد 28 مارس 1940(1940-03-28)بايساندو  الوفاة 3 مارس 2013 (عن عمر ناهز 72 عاماً)أسونسيون  سبب الوفاة سرطان المعدة  الطول 170 سنتيمتر  مركز اللعب مهاجم الجنسية الأوروغواي  مسيرة الشباب سنوات فريق Colón de Paysandú المسيرة...

Maria Rosaria (Mara) Carfagna (kelahiran 18 Desember 1975) adalah seorang politikus Italia Latar belakang Carfagna lahir di Salerno Pranala luar Ministry biography Diarsipkan 2008-05-12 di Wayback Machine. Personal blog Diarsipkan 2009-05-28 di Wayback Machine. Mara Carfagna - slideshow and video by The Huffington Post lbsKabinet Berlusconi IV (2008–11) Berlusconi Tremonti Maroni Alfano Palma Frattini Sacconi Fazio Gelmini La Russa Scajola Romani Zaia Romano Prestigiacomo Matteoli Bondi Gal...

 

Chinese philosophies flourishing in the 500s–221 BC Hundred Schools of ThoughtTraditional Chinese諸子百家Simplified Chinese诸子百家TranscriptionsStandard MandarinHanyu Pinyinzhūzǐ bǎijiāWade–Gileschu1-tzu3 pai3-chia1IPA[ʈʂútsɨ̀ pàɪtɕjá]WuRomanizationTsoe tzy ba' gaYue: CantoneseYale RomanizationJyū-jí baak-gāaJyutpingZyu1-zi2 baak3-gaa1Southern MinTâi-lôTsu-tsú pah-ka The Hundred Schools of Thought (Chinese: 諸子百家; pinyin&...

 

Overview of music traditions in Lithuania: folk, classical, contemporary, pop, etc. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (March 2012) This article's use of external links may not follow...

  لمعانٍ أخرى، طالع بشت (توضيح). بستمعلومات عامةالتقسيم الإداري مقاطعة بشت البلد  المجر الإحداثيات 47°30′N 19°06′E / 47.5°N 19.1°E / 47.5; 19.1 تعديل - تعديل مصدري - تعديل ويكي بيانات القسم الشرقي من العاصمة بودابست (بشت) 47°30′N 19°6′E / 47.500°N 19.100°E / 47.500; 19.100 بس...

 

СокльєрSauclières Країна  Франція Регіон Окситанія  Департамент Аверон  Округ Мійо Кантон Нант Код INSEE 12260 Поштові індекси 12230 Координати 43°58′37″ пн. ш. 3°22′04″ сх. д.H G O Висота 580 - 1 341 м.н.р.м. Площа 38,81 км² Населення 169 (01-2020[1]) Густота 4,12 ос./км² Розміщення Вл...

 

School van de bevrijdingsbeweging PAIGC in de bevrijde gebieden, Guinee-Bissau, 1974. Albert Anker (1896) Een school is een instelling waarin onderwijs op een bepaald niveau gegeven wordt. Vanwege de leerplichtwet gaan de meeste kinderen naar een school, hoewel ook andere vormen van onderwijs mogelijk zijn om aan de leerplicht te voldoen. Het woord 'school' is afgeleid van het Griekse 'σχολή', dat 'vrije tijd' betekent. Onderwijs was namelijk oorspronkelijk iets waarvoor men vrije tijd m...

Line separating Armenian and Azerbaijani forces in the Nagorno-Karabakh conflict The Nagorno-Karabakh line of contact (1994–2020) in red, with the largely unguarded Murovdag (Mrav) mountain range in the north. The Line of Contact (Armenian: շփման գիծ, shp’man gits, Azerbaijani: təmas xətti) was the front line which separated Armenian forces (the Nagorno-Karabakh Defense Army and the Armenian Armed Forces) and the Azerbaijan Armed Forces from the end of the First Nagorno-Karabakh...

 

2014 Indian filmVegamDirected byK G Anil KumarWritten byK G Anil KumarScreenplay byK G Anil KumarStarringVineeth KumarJacob GregorySamskruthy ShenoyPratap PothenShammi ThilakanCinematographyManoj Kumar KhatoiEdited byDeepu S. JosephMusic byGovind MenonProductioncompanyFX4 Movie MakersRelease date 11 July 2014 (2014-07-11) (Kerala) CountryIndiaLanguageMalayalam Vegam is a 2014 Malayalam film starring Vineeth Kumar,[1] Jacob Gregory, Samskruthy Shenoy, Prathap Pothen,...

 

Frans Johan Louwrens GhijselsBiografiKelahiran8 September 1882 Kematian2 Maret 1947 (64 tahun)Data pribadiPendidikanUniversitas Teknik Delft KegiatanPekerjaanArsitek dan Perencana kota Bekerja diAlgemeen Ingenieurs- en Architectenbureau (AIA) (en) Frans Johan Louwrens Ghijsels (8 September 1882 – 2 Maret 1947) dulu adalah seorang arsitek dan perencana perkotaan yang bekerja di Belanda dan Hindia Belanda.[1] Ghijsels adalah pendiri AIA, konsultan arsitektur terbesar di ...

American street performer Naked CowboyBornRobert John Burck (1970-12-23) December 23, 1970 (age 52)Cincinnati, Ohio, U.S.Occupation(s)Singer, songwriter, writer, former political candidate, actorYears active1998–presentSpouse(s) Patricia Burck, The Naked Cowgirl ​ ​(m. 2013)​Websitenakedcowboy.com Robert John Burck (born December 23, 1970), better known as the Naked Cowboy, is an American street performer, singer, songwriter, and occasional actor...

 

2011 South Korean filmHanjiTheatrical release posterDirected byIm Kwon-taekWritten byIm Kwon-taek Song Gil-hanProduced byMin Byung-lock Lee Hee-wonStarringPark Joong-hoon Kang Soo-yeon Ye Ji-wonCinematographyKim Hoon-kwangEdited byPark Soon-dukMusic byKim Soo-chulProductioncompanyJeonju International Film FestivalRelease date March 17, 2011 (2011-03-17) Running time118 minutesCountrySouth KoreaLanguageKoreanBudgetUS$1.73 millionBox officeUS$310,073 Hanji (Korean: 달...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!