Solvency cone

The solvency cone is a concept used in financial mathematics which models the possible trades in the financial market. This is of particular interest to markets with transaction costs. Specifically, it is the convex cone of portfolios that can be exchanged to portfolios of non-negative components (including paying of any transaction costs).

Mathematical basis

If given a bid-ask matrix for assets such that and is the number of assets which with any non-negative quantity of them can be "discarded" (traditionally ), then the solvency cone is the convex cone spanned by the unit vectors and the vectors .[1]

Definition

A solvency cone is any closed convex cone such that and .[2]

Uses

A process of (random) solvency cones is a model of a financial market. This is sometimes called a market process.

The negative of a solvency cone is the set of portfolios that can be obtained starting from the zero portfolio. This is intimately related to self-financing portfolios.[citation needed]

The dual cone of the solvency cone () are the set of prices which would define a friction-less pricing system for the assets that is consistent with the market. This is also called a consistent pricing system.[1][3]

Examples

Solvency cone with no transaction costs
Sample solvency cone with no transaction costs
Solvency cone with transaction costs
Sample solvency cone with transaction costs

Assume there are 2 assets, A and M with 1 to 1 exchange possible.

Frictionless market

In a frictionless market, we can obviously make (1A,-1M) and (-1A,1M) into non-negative portfolios, therefore . Note that (1,1) is the "price vector."

With transaction costs

Assume further that there is 50% transaction costs for each deal. This means that (1A,-1M) and (-1A,1M) cannot be exchanged into non-negative portfolios. But, (2A,-1M) and (-1A,2M) can be traded into non-negative portfolios. It can be seen that .

The dual cone of prices is thus easiest to see in terms of prices of A in terms of M (and similarly done for price of M in terms of A):

  • someone offers 1A for tM: therefore there is arbitrage if
  • someone offers tM for 1A: therefore there is arbitrage if

Properties

If a solvency cone :

  • contains a line, then there is an exchange possible without transaction costs.
  • , then there is no possible exchange, i.e. the market is completely illiquid.

References

  1. ^ a b Schachermayer, Walter (November 15, 2002). "The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time". {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ Hamel, A. H.; Heyde, F. (2010). "Duality for Set-Valued Measures of Risk". SIAM Journal on Financial Mathematics. 1 (1): 66–95. CiteSeerX 10.1.1.514.8477. doi:10.1137/080743494.
  3. ^ Löhne, Andreas; Rudloff, Birgit (2015). "On the dual of the solvency cone". Discrete Applied Mathematics. 186: 176–185. arXiv:1402.2221. doi:10.1016/j.dam.2015.01.030. ISSN 0166-218X. S2CID 12427504.

Read other articles:

Hiram CorsonBornNovember 6, 1828 Philadelphia DiedJune 15, 1911  (aged 82)Ithaca OccupationWriter Spouse(s)Caroline Rollin Signature Hiram Corson (November 6, 1828 – June 15, 1911) was an American professor of literature.[1] Life Corson was born in Philadelphia, Pennsylvania. He held a position in the library of the Smithsonian Institution, Washington, D.C. (1849-1856), was a lecturer on English literature in Philadelphia (1859-1865), and was professor ...

 

Patung Alfonso III dari León di Madrid (L.S. Carmona, 1750-53). Alfonso III (skt. 848 – 20 Desember 910), dijuluki yang Agung, adalah raja León, Galisia dan Asturias dari 866 hingga kematiannya. Dia juga dijuluki Kaisar Spanyol. Ia adalah putra dan penerus dari Ordoñu I. Ia juga bergelar Pangeran seluruh Galisia (Princeps totius Galletiae[1]). Sedikit yang diketahui mengenai Alfonso kecuali fakta keberhasilannya dalam mengkonsolidasi kerajaan selama lemahnya Umayyah di Cordoba. I...

 

У Вікіпедії є статті про інших людей із прізвищем Ерікссон. Єва Ерікссоншвед. Eva Eriksson На Ґетеборзькому книжковому ярмарку 2010 рокуПри народженні швед. Eva Marie Eriksson[1]Народження 13 травня 1949(1949-05-13) (74 роки)Гальмстад, ШвеціяНаціональність шведкаКраїна  ШвеціяДіяльність пи

Стрибіж Коростенська дирекція Південно-Західна залізниця зупинний пунктРозташуванняРозташування с. СлобідкаКоординати 50°24′45″ пн. ш. 28°10′54″ сх. д. / 50.41250000002777654° пн. ш. 28.18190000002777751° сх. д. / 50.41250000002777654; 28.18190000002777751Координати: 50°24′45″ пн...

 

برمجانةمعلومات عامةالمنشأ إيطاليا النوع طبق المكونات الرئيسية  القائمة ... صلصة البندورة بارميجيانو ريجيانو باذنجان زيت basil (en) ملح الطعام بصل فليفلة Fior di latte (en) تعديل - تعديل مصدري - تعديل ويكي بيانات البَرْمِجَانَة هو طبق إيطالي مصنوع من شرائح الباذنجان المقلي مع شرائح ال

 

British TV series or programme Al Murray's Compete for the MeatGenreGame showPresented byAl MurrayStarringZöe SalmonVoices ofJim RosenthalCountry of originUnited KingdomOriginal languageEnglishNo. of series1No. of episodes8 (list of episodes)ProductionProduction locationBBC Television CentreRunning time45 minutes approxProduction companyAvalon TelevisionOriginal releaseNetworkDaveRelease19 May (2011-05-19) –7 July 2011 (2011-07-07) Al Murray's Compete for the Meat (some...

American politician Clyde Germany TrammellMember of the Florida House of Representatives from Brevard CountyIn office1929–1933[1]Preceded byWilliam Jackson CreelSucceeded byNoah Brown Butt28th Mayor of Melbourne, FloridaIn officeDecember 13, 1932 – December 12, 1933Preceded byRobert Lee RoweSucceeded byI. Kimbell Hicks Personal detailsBornJuly 22, 1892[2]Lakeland, Polk County, Florida[2]Died1953[2]Dade County, Florida[2]Political partyD...

 

JPEG encoder For the eponymous baked goods, see Biscuit. GuetzliOriginal author(s)Google ResearchInitial releaseMarch 15, 2017; 6 years ago (2017-03-15)Stable release1.0.1 / March 21, 2017; 6 years ago (2017-03-21) Repositorygithub.com/google/guetzliWritten inC++Standard(s)JPEGLicenseApache License 2.0 Guetzli is a freely licensed JPEG encoder that Jyrki Alakujala, Robert Obryk, and Zoltán Szabadka have developed in Google's Zürich research branch. The en...

 

Pour les articles homonymes, voir EELV. Les Écologistes – Europe Écologie Les Verts Logotype officiel. Présentation Secrétaire nationale Marine Tondelier Fondation 29 janvier 1984(Les Verts, Confédération écologiste - Parti écologiste)13 novembre 2010(Europe Écologie Les Verts)14 octobre 2023(Les Écologistes) Fusion de Les VertsEurope Écologie Scission dans Parti écologiste (2015) Siège 11, rue des Petits Hôtels75010 Paris Porte-paroles Aminata NiakatéSophie Bussière Mouveme...

De troubadourBerkas:Lenny Kuhr - De troubadour.jpgPerwakilan Kontes Lagu Eurovision 1969NegaraBelandaArtisLenny KuhrBahasaDutchKomposerDavid HartsemaPenulis lirikLenny KuhrKonduktorFrans de KokHasil FinalHasil final1Poin di final18Kronologi partisipasi◄ Morgen (1968)   Waterman (1970) ► De troubadour adalah sebuah lagu yang dinyanyikan dalam bahasa Belanda oleh Lenny Kuhr mewakili Belanda. Lagu tersebut menjadi salah satu dari empat pemenang di Kontes Lagu Eurovision 1969 bersam...

 

King of Kent Egbert II redirects here. For the 11th-century German nobleman, see Egbert II, Margrave of Meissen. For the 9th-century Anglo-Saxon king, see Ecgberht II of Northumbria. Coin of Ecgberht, Fitzwilliam Museum. Ecgberht II was king of Kent jointly with Heaberht. Ecgberht II is known from his coins and charters, ranging from 765 to 779,[1][2][3][4] two of which were witnessed or confirmed by Heaberht. Ecgberht II acceded by 765, when he issued his earl...

 

Hawaii Apollo 11 display Hawaii Apollo 11 display The Apollo 11 lunar sample display is a commemorative podium style plaque display consisting of four dust particle specimens (dubbed Moon rocks), the recipient's flag and two small metal plates attached with descriptive messages. The Apollo 11 plaques were given as gifts in 1970 by President Richard Nixon to 135 countries, the 50 states of the United States and its territories, and the United Nations. History and description At the request of ...

Fictional character in Kingdom Hearts Fictional character XehanortKingdom Hearts characterKingdom Hearts III screenshot featuring from left to right: Ansem, Xehanort (young and old), and Xemnas.First gameKingdom Hearts (2002)Created byTetsuya NomuraDesigned byTetsuya NomuraVoiced by Japanese Akio Otsuka (Ansem; Master Xehanort, Kingdom Hearts III)Norio Wakamoto (Xemnas)Chikao Ōtsuka (Master Xehanort, Birth by Sleep and Dream Drop Distance)Takanori Okuda (young Xehanort) English Billy Zane (A...

 

Class (Polyplacophora) of marine molluscs This article is about the mollusc class. For the mollusc genus, see Chiton (genus). For other uses, see Chiton (disambiguation). Not to be confused with chitin. ChitonTemporal range: Late Cambrian – Present[1][2] PreꞒ Ꞓ O S D C P T J K Pg N A live lined chiton, Tonicella lineata photographed in situ: The anterior end of the animal is to the right. Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Mollusca Clas...

 

2000 picture book by Stern Nijland and Linda De Haan King & King AuthorsLinda de Haan and Stern NijlandOriginal titleKoning & KoningCover artistLinda de Haan and Stern NijlandLanguageDutchSubjectMarriage, weddings, gay love, princesGenreChildren's fictionPublisherNetherlands: GottmerUSA: Tricycle PressPublication date2000Published in English2002Media typePrintPages32ISBN978-1-58246-061-1OCLC26563465Followed byKing & King & Family  King & King ...

SantoSimeon II dari AleksandriaPaus Aleksandria ke-51 & Patriarkh Tahta St. MarkusAwal masa jabatan830Masa jabatan berakhir19 Oktober 830PendahuluYakobusPenerusYusuf IInformasi pribadiLahirAleksandria, MesirMeninggal19 Oktober 830MakamGereja Santo MarkusKewarganegaraanMesirDenominasiKristen Ortodoks KoptikKediamanGereja Santo MarkusOrang kudusPesta19 Oktober (9 Babah dalam Kalender Koptik) Paus Simeon II dari Aleksandria adalah Paus Aleksandria ke-51 & Patriarkh Tahta St. Markus. Sant...

 

Congolese footballer (born 1992) Jordan Nkololo Personal informationFull name Michaël Jordan NkololoDate of birth (1992-11-09) 9 November 1992 (age 31)Place of birth Créteil, FranceHeight 1.83 m (6 ft 0 in)Position(s) Attacking midfielder / ForwardTeam informationCurrent team ÍBVNumber 24Senior career*Years Team Apps (Gls)2012–2013 Châteauroux 3 (0)2012–2013 Châteauroux II 20 (6)2013–2015 Clermont 50 (2)2013–2015 Clermont II 9 (3)2015–2018 Caen 26 (0)2015–...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Anna, Valencia – news · newspapers · books · scholar · JSTOR (December 2016) (Learn how and when to remove this template message) Not to be confused with Anna M. Valencia. Municipality in Valencian Community, SpainAnnaMunicipality Coat of armsAnnaLocation in SpainCoordinates: 39...

Lincoln Red Imps Généralités Nom complet Lincoln Red Imps Football Club Surnoms The Imps, The Red Imps Noms précédents Lincoln FC (1976-2000)Lincoln ABG (2000-2003)Newcastle FC (2003-2007)Lincoln FC (2007-2011)Lincoln OSG (2011-2012) Fondation 1976 Stade Victoria Stadium (5 000 places) Siège 64 Red Sands House, Red Sands Road, PO Box 1411, Gibraltar. Championnat actuel Championnat de Gibraltar Président Derek Alman Entraîneur Mick McElwee Site web lincolnredimpsfc.co.uk Palm...

 

1962 FIFA World Cup qualificationTournament detailsDates21 August 1960 – 16 December 1961Teams56 (from 6 confederations)Tournament statisticsMatches played92Goals scored325 (3.53 per match)Top scorer(s) Andrej Kvašňák(7 goals)← 1958 1966 → International football competition A total of 56 teams entered the 1962 FIFA World Cup qualification rounds, competing for a total of 16 spots in the final tournament. Chile, as the hosts, and Brazil, as the defending champio...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!