Silicon–germanium

SiGe (/ˈsɪɡ/ or /ˈs/), or silicon–germanium, is an alloy with any molar ratio of silicon and germanium, i.e. with a molecular formula of the form Si1−xGex. It is commonly used as a semiconductor material in integrated circuits (ICs) for heterojunction bipolar transistors or as a strain-inducing layer for CMOS transistors. IBM introduced the technology into mainstream manufacturing in 1989.[1] This relatively new technology offers opportunities in mixed-signal circuit and analog circuit IC design and manufacture. SiGe is also used as a thermoelectric material for high-temperature applications (>700 K).

History

The first paper on SiGe was published in 1955 on the magnetoresistance of silicon germanium alloys .[2] The first mention of SiGe devices was actually in the original patent for the bipolar transistor where the idea of a SiGe base in a heterojunction bipolar transistor (HBT) was discussed with a description of the physics in the 1957.[3] The first epitaxial growth of SiGe heterostructures which is required for a transistor was not demonstrated until 1975 by Erich Kasper and colleagues at the AEG Research Centre (now Daimler Benz) in Ulm, Germany using molecular beam epitaxy (MBE).[4]

Production

The use of silicon–germanium as a semiconductor was championed by Bernie Meyerson.[5] The challenge that had delayed its realization for decades was that germanium atoms are roughly 4% larger than silicon atoms. At the usual high temperatures at which silicon transistors were fabricated, the strain induced by adding these larger atoms into crystalline silicon produced vast numbers of defects, precluding the resulting material being of any use. Meyerson and co-workers discovered[6] that the then believed requirement for high temperature processing was flawed, allowing SiGe growth at sufficiently low temperatures[7] such that for all practical purposes no defects were formed. Once having resolved that basic roadblock, it was shown that resultant SiGe materials could be manufactured into high performance electronics[8] using conventional low cost silicon processing toolsets. More relevant, the performance of resulting transistors far exceeded what was then thought to be the limit of traditionally manufactured silicon devices, enabling a new generation of low cost commercial wireless technologies[9] such as WiFi. SiGe processes achieve costs similar to those of silicon CMOS manufacturing and are lower than those of other heterojunction technologies such as gallium arsenide. Recently, organogermanium precursors (e.g. isobutylgermane, alkylgermanium trichlorides, and dimethylaminogermanium trichloride) have been examined as less hazardous liquid alternatives to germane for MOVPE deposition of Ge-containing films such as high purity Ge, SiGe, and strained silicon.[10][11]

SiGe foundry services are offered by several semiconductor technology companies. AMD disclosed a joint development with IBM for a SiGe stressed-silicon technology,[12] targeting the 65 nm process. TSMC also sells SiGe manufacturing capacity.

In July 2015, IBM announced that it had created working samples of transistors using a 7 nm silicon–germanium process, promising a quadrupling in the amount of transistors compared to a contemporary process.[13]

SiGe transistors

SiGe allows CMOS logic to be integrated with heterojunction bipolar transistors,[14] making it suitable for mixed-signal integrated circuits.[15] Heterojunction bipolar transistors have higher forward gain and lower reverse gain than traditional homojunction bipolar transistors. This translates into better low-current and high-frequency performance. Being a heterojunction technology with an adjustable band gap, the SiGe offers the opportunity for more flexible bandgap tuning than silicon-only technology.

Silicon–germanium on insulator (SGOI) is a technology analogous to the silicon on insulator (SOI) technology currently employed in computer chips. SGOI increases the speed of the transistors inside microchips by straining the crystal lattice under the MOS transistor gate, resulting in improved electron mobility and higher drive currents. SiGe MOSFETs can also provide lower junction leakage due to the lower bandgap value of SiGe.[citation needed] However, a major issue with SGOI MOSFETs is the inability to form stable oxides with silicon–germanium using standard silicon oxidation processing.

Thermoelectric application

The thermoelectric properties of SiGe was first measured in 1964 with p-SiGe having a ZT up to ~0.7 at 1000˚C and n-SiGe a ZT up to ~1.0 at 1000˚C[16] which are some of the highest performance thermoelectrics at high temperatures. A silicon–germanium thermoelectric device MHW-RTG3 was used in the Voyager 1 and 2 spacecraft.[17] Silicon–germanium thermoelectric devices were also used in other MHW-RTGs and GPHS-RTGs aboard Cassini, Galileo, Ulysses.[18]

Light emission

By controlling the composition of a hexagonal SiGe alloy, researchers from Eindhoven University of Technology developed a material that can emit light.[19] In combination with its electronic properties, this opens up the possibility of producing a laser integrated into a single chip to enable data transfer using light instead of electric current, speeding up data transfer while reducing energy consumption and need for cooling systems. The international team, with lead authors Elham Fadaly, Alain Dijkstra and Erik Bakkers at Eindhoven University of Technology in the Netherlands and Jens Renè Suckert at Friedrich-Schiller-Universität Jena in Germany, were awarded the 2020 Breakthrough of the Year award by the magazine Physics World.[20]

See also

References

  1. ^ Ouellette, Jennifer (June/July 2002). "Silicon–Germanium Gives Semiconductors the Edge". Archived 2008-05-17 at the Wayback Machine, The Industrial Physicist.
  2. ^ Glicksman, Maurice (1955). "Magnetoresistance of Germanium-Silicon Alloys". Physical review. 100: 1146–1147. doi:10.1103/PhysRev.100.1146.
  3. ^ Kroemer, Herbert (1957). "Theory of a Wide-Gap Emitter for Transistors". Proceedings of the IRE. 45 (11): 1535–1537. doi:10.1109/JRPROC.1957.278348. ISSN 2162-6634.
  4. ^ Kasper, Erich; Herzog, H.J.; Kibbel, H. (1975). "A one-dimensional SiGe superlattice grown by UHV epitaxy". Applied Physics. 8 (3): 199–205. doi:10.1007/BF00896611. ISSN 1432-0630.
  5. ^ Meyerson, Bernard S. (March 1994). "High-Speed Silicon-Germanium Electronics". Scientific American. 270 (3): 62–67. Bibcode:1994SciAm.270c..62M. doi:10.1038/scientificamerican0394-62.
  6. ^ "Bistable Conditions for Low Temperature Silicon Epitaxy," Bernard S. Meyerson, Franz Himpsel and Kevin J. Uram, Appl. Phys. Lett. 57, 1034 (1990).
  7. ^ B. S. Meyerson, "UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications," in Proceedings of the IEEE, vol. 80, no. 10, pp. 1592-1608, Oct. 1992, doi: 10.1109/5.168668.
  8. ^ "75 GHz f t  SiGe Base Heterojunction Bipolar Transistor," G.L. Patton, J.H. Comfort, B.S. Meyerson, E.F. Crabbe, G.J. Scilla, E. DeFresart, J.M.C. Stork, J.Y.-C. Sun, D.L. Harame and J. Burghartz, Electron. Dev. Lett. 11, 171 (1990).
  9. ^ "SiGe HBTs Reach the Microwave and Millimeter-Wave Frontier," C. Kermarrec, T. Tewksbury, G. Dave, R. Baines, B. Meyerson, D. Harame and M. Gilbert, Proceedings of the 1994 Bipolar/BiCMOS Circuits & Technology Meeting, Minneapolis, Minn., Oct. 10-11, 1994, Sponsored by IEEE, (1994).
  10. ^ Woelk, Egbert; Shenai-Khatkhate, Deodatta V.; DiCarlo, Ronald L.; Amamchyan, Artashes; Power, Michael B.; Lamare, Bruno; Beaudoin, Grégoire; Sagnes, Isabelle (January 2006). "Designing novel organogermanium OMVPE precursors for high-purity germanium films". Journal of Crystal Growth. 287 (2): 684–687. Bibcode:2006JCrGr.287..684W. doi:10.1016/j.jcrysgro.2005.10.094.
  11. ^ Shenai, Deo V.; DiCarlo, Ronald L.; Power, Michael B.; Amamchyan, Artashes; Goyette, Randall J.; Woelk, Egbert (January 2007). "Safer alternative liquid germanium precursors for relaxed graded SiGe layers and strained silicon by MOVPE". Journal of Crystal Growth. 298: 172–175. Bibcode:2007JCrGr.298..172S. doi:10.1016/j.jcrysgro.2006.10.194.
  12. ^ AMD And IBM Unveil New, Higher Performance, More Power Efficient 65nm Process Technologies At Gathering Of Industry's Top R&D Firms, retrieved at March 16, 2007.
  13. ^ Markoff, John (9 July 2015). "IBM Discloses Working Version of a Much Higher-Capacity Chip". The New York Times.
  14. ^ "A 200 mm SiGe HBT BiCMOS Technology for Mixed Signal Applications," K. Schonenberg, M. Gilbert, G.D. Berg, S. Wu, M. Soyuer, K. A. Tallman, K. J. Stein, R. A. Groves, S. Subbanna, D.B. Colavito, D.A. Sunderland and B.S. Meyerson," Proceedings of the 1995 Bipolar/BiCMOS Circuits and Technology Meeting, p. 89-92, 1995.
  15. ^ Cressler, J. D.; Niu, G. (2003). Silicon-Germanium Heterojunction Bipolar Transistors. Artech House. p. 13.
  16. ^ Dismukes, J.P.; Ekstrom, E.; Beers, D.S.; Steigmeier, E.F.; Kudman, I. (1964). "Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 °K". Journal of Applied. 35 (10): 2899. doi:10.1063/1.1713126. ISSN 0021-8979.
  17. ^ "Thermoelectrics History Timeline". Alphabet Energy. Archived from the original on 2019-08-17.
  18. ^ G. L. Bennett; J. J. Lombardo; R. J. Hemler; G. Silverman; C. W. Whitmore; W. R. Amos; E. W. Johnson; A. Schock; R. W. Zocher; T. K. Keenan; J. C. Hagan; R. W. Englehart (26–29 June 2006). Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator (PDF). 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, California.
  19. ^ Fadaly, Elham M. T.; Dijkstra, Alain; Suckert, Jens Renè; Ziss, Dorian; van Tilburg, Marvin A. J.; Mao, Chenyang; Ren, Yizhen; van Lange, Victor T.; Korzun, Ksenia; Kölling, Sebastian; Verheijen, Marcel A.; Busse, David; Rödl, Claudia; Furthmüller, Jürgen; Bechstedt, Friedhelm; Stangl, Julian; Finley, Jonathan J.; Botti, Silvana; Haverkort, Jos E. M.; Bakkers, Erik P. A. M. (April 2020). "Direct-bandgap emission from hexagonal Ge and SiGe alloys". Nature. 580 (7802): 205–209. arXiv:1911.00726. Bibcode:2020Natur.580..205F. doi:10.1038/s41586-020-2150-y. PMID 32269353. S2CID 207870211.
  20. ^ Hamish Johnston (10 Dec 2020). "Physics World announces its Breakthrough of the Year finalists for 2020". Physics World.

Further reading

  • Raminderpal Singh; Modest M. Oprysko; David Harame (2004). Silicon Germanium: Technology, Modeling, and Design. IEEE Press / John Wiley & Sons. ISBN 978-0-471-66091-0.
  • John D. Cressler (2007). Circuits and Applications Using Silicon Heterostructure Devices. CRC Press. ISBN 978-1-4200-6695-1.

Read other articles:

Yann IAdipati BretagneBerkuasa21 Oktober 1221 - 8 Oktober 1286PendahuluPêr I & AlisPenerusYann IIWaliPêr IComte RichmondBerkuasa1268PendahuluPierre II dari SavoiePenerusYann IIInformasi pribadiPemakamanBiara PrièresWangsaWangsa DreuxAyahPêr IIbuAlisPasanganBlanche dari NavarraAnakdi antara lainnyaYann IIPierre, Lord HadeAlix, Comtesse ChâtillonAgamaKatolik Roma Yann I si Merah (di dalam bahasa Breton Yann Iañ ar Ruz, di dalam bahasa Prancis Jean I le Roux) (1217 – 8 Oktober 1286),...

 

 

ЕншвільEincheville   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Форбак-Буле-Мозель Кантон Гростенкен Код INSEE 57189 Поштові індекси 57340 Координати 48°59′01″ пн. ш. 6°36′20″ сх. д.H G O Висота 249 - 312 м.н.р.м. Площа 6,78 км² Населення 225 (01-2020[1]) Густота 33,...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2023) المتنخل الهذلي معلومات شخصية مكان الميلاد مكة مكان الوفاة مكة الجنسية عرب اللقب المتنخل الحياة العملية المهنة شاعر بوابة الأدب تعديل مصدري - تعديل   المتنخ

NGC 2748 La galaxie spirale NGC 2748. Données d’observation(Époque J2000.0) Constellation Girafe Ascension droite (α) 09h 13m 43,0s[1] Déclinaison (δ) 76° 28′ 31″ [1] Magnitude apparente (V) 11,7[2] 12,4 dans la Bande B [2] Brillance de surface 13,03 mag/am2[2] Dimensions apparentes (V) 3,1′ × 1,1′ [2] Décalage vers le rouge 0,004923 ± 0,000007[1] Angle de position 38°[2] Localisation dans la constellation : Girafe Astrométrie Vitesse...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Geology of Pakistan – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Rawat Fault line near Islamabad The geology of Pakistan encompasses the varied landscapes that make up the land constituting moder...

 

 

ريفيزوندولي     الإحداثيات 41°52′16″N 14°04′03″E / 41.871111111111°N 14.0675°E / 41.871111111111; 14.0675  [1] تقسيم إداري  البلد إيطاليا[2]  التقسيم الأعلى مقاطعة لَكوِيلة  خصائص جغرافية  المساحة 32 كيلومتر مربع (9 أكتوبر 2011)[3]  ارتفاع 1320 متر  عدد السكان  ...

لأماكن أخرى بنفس الاسم، انظر كليفتون (توضيح). كليفتون     الإحداثيات 39°47′49″N 83°49′34″W / 39.7969°N 83.8261°W / 39.7969; -83.8261  [1] تاريخ التأسيس 1840  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى أوهايو  خصائص جغرافية  المساحة 0.480922 كيلومتر مرب

 

 

العلاقات المصرية السورية   مصر   سوريا السفارات السفارة المصرية في دمشق   السفير : (قائم بالاعمال) محمد ثروت سليم   العنوان : (كفرسوسة، شارع 17 نيسان)دمشق السفارة السورية في القاهرة   السفير : (قائم بالاعمال)رياض السنيح   العنوان : القاه...

 

 

PZL Świdnik SA (Wytwórnia Sprzętu Komunikacyjnego PZL-Świdnik SA) adalah produsen helikopter terbesar di Polandia. Produk utamanya adalah PZL W-3 Sokol dan SW-4 PZL Puszczyk helikopter. Pada awal 2010 pabrik diakuisisi oleh AgustaWestland.[1] Produk PZL Kania PZL W-3 PZL SW-4 PZL SM-4 Latka Referensi ^ Gazeta Wyborcza article from Feb. 2, 2010 [1] Diarsipkan 2014-03-12 di Wayback Machine. Pranala luar Wikimedia Commons memiliki media mengenai PZL-Świdnik. PZL-Świdnik official we...

Molten salt reactor prototype For other uses of the acronym, see TMSR (disambiguation). TMSR-LF1TMSR project logoGenerationIVReactor conceptMSRStatusPending[1]LocationChina[note] Maps class=notpageimage| TMSR-LF1 (trefoil) in Gansu province (red). Shanghai campus also indicated. TMSR-LF1 (trefoil) within Minqin county (orange) is roughly 120 km (75 miles) north of the city of Wuwei (star)[2] Coordinates38°57′37″N 102°36′44″E / 38.9602°N 102.6122°E&#...

 

 

1975 filmReflections in BlackDirected byTano CimarosaWritten byAdriano BolzoniLuigi Latini de MarchiStarringJohn RichardsonDagmar LassanderNinetto DavoliMagda KonopkaGiacomo Rossi StuartTano CimarosaCinematographyMarcello MasciocchiMusic byCarlo SavinaRelease date 1975 (1975) Running time90 minutesLanguageItalian Reflections in Black (Italian: Il vizio ha le calze nere / Vice Wears Black Hose) is a 1975 Italian giallo film directed by the actor Tano Cimarosa, here at his directorial debu...

 

 

Stratovolcano in central-eastern El Salvador ChinamecaChinameca stratovolcano is seen here from the SE near the summit of neighboring San Miguel volcano.Highest pointElevation1,300 m (4,300 ft)[1]Coordinates13°28′41″N 88°19′48″W / 13.478°N 88.330°W / 13.478; -88.330GeographyChinamecaLocation in El Salvador LocationSan Miguel Department, El SalvadorGeologyMountain typeStratovolcanoLast eruptionUnknown Chinameca (also known as El Pacaya...

Die Pfarrkirche St. Martin in Poppenhausen Die römisch-katholische Pfarrkirche St. Martin in Poppenhausen stammt aus dem 12. Jahrhundert und wurde als Wehrkirche im romanischen Stil erbaut.[1] Inhaltsverzeichnis 1 Geschichte 2 Ausstattung 2.1 Altäre 2.2 Gewölbe und Chorraum 2.3 Kircheneingang 2.4 Orgel 3 Siehe auch 4 Weblinks 5 Einzelnachweise Geschichte Die St.-Martin-Kirche wurde erstmals 1184 erwähnt. Der Glockenturm stammt aus dem 11. oder 12. Jahrhundert. Der Turm und das Lan...

 

 

Pemilihan Umum Bupati Bengkulu Utara 2020201520249 Desember 2020[1]Kandidat Peta persebaran suara Peta Bengkulu yang menyoroti Kabupaten Bengkulu Utara Bupati dan Wakil Bupati petahanaMian danArie Septia Adinata Partai Demokrasi Indonesia Perjuangan Bupati dan Wakil Bupati terpilih Belum Diketahui Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan Umum Bupati Bengkulu Utara 2020 akan dilaksanakan pada 9 Desember 2020 untuk memilih Bupati Bengkulu Utara pe...

 

 

Carlo Nash Nash bermain untuk EvertonInformasi pribadiNama lengkap Carlo James Nash[1]Tanggal lahir 13 September 1973 (umur 50)[1]Tempat lahir Bolton, InggrisTinggi 1,96 m (6 ft 5 in)[2]Posisi bermain Penjaga gawangKarier junior Moss Bank Manchester UnitedKarier senior*Tahun Tim Tampil (Gol)1993–1995 Rossendale United 1995–1996 Clitheroe 1996–1998 Crystal Palace 21 (0)1998–2001 Stockport County 89 (0)2000–2001 → Wolverhampton Wanderers (...

American basketball player (born 1984) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may be in need of reorganization to comply with Wikipedia's layout guidelines. Please help by editing the article to make improvements to the overall structure. (September 2018) (Learn how and when to remove this template message) This biography of a living person needs additional citations...

 

 

Style of a Hindu temple Ek-ratna Ramchandraji temple at Guptipara, Hooghly district. Ratna Style (Bengali: রত্ন শিল্পরীতি) is a style of Bengal temple architecture, that originated in Bengal from the 15th to 16th centuries, under the Mallabhum kingdom (also called Malla dynasty).[1] Originating as a regional style in Hindu temple architecture. It is an extended style of the Chala temple.[2] The special feature of Ratna-style temples is the curved corn...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ستانلي ر. أفيري   معلومات شخصية تاريخ الميلاد 14 ديسمبر 1879  تاريخ الوفاة 17 سبتمبر 1967 (87 سنة)   مواطنة الولايات المتحدة  الحياة العملية المهنة ملحن  ...

1965 Los Angeles mayoral election ← 1961 April 6, 1965 (1965-04-06) 1969 →   Candidate Sam Yorty James Roosevelt Popular vote 392,775 247,313 Percentage 57.93% 36.48% Mayor before election Sam Yorty Democratic Elected Mayor Sam Yorty Democratic Elections in California Federal government U.S. President 1852 1856 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 19...

 

 

Village in Rhode Island, United States 2008 picture of Branch Village featuring the fire station and Kennedy's Lunch 1920s picture of Branch Village featuring a former gas station and Kennedy's Lunch, an extant restaurant Branch Village is a village in Providence County, Rhode Island, United States. Located on Rhode Island Route 146A (Great Road) near the intersection of St. Paul Street in North Smithfield, the village takes its name from the Branch River which runs through it. History In 179...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!