Routh's theorem

Routh's theorem

In geometry, Routh's theorem determines the ratio of areas between a given triangle and a triangle formed by the pairwise intersections of three cevians. The theorem states that if in triangle points , , and lie on segments , , and , then writing , , and , the signed area of the triangle formed by the cevians , , and is

where is the area of the triangle .

This theorem was given by Edward John Routh on page 82 of his Treatise on Analytical Statics with Numerous Examples in 1896. The particular case has become popularized as the one-seventh area triangle. The case implies that the three medians are concurrent (through the centroid).

Proof

Routh's theorem

Suppose that the area of triangle is 1. For triangle and line , Menelaus's theorem implies

.

Then . Thus the area of triangle is

By similar arguments, and . Thererfore the area of triangle is

Citations

The citation commonly given for Routh's theorem is Routh's Treatise on Analytical Statics with Numerous Examples, Volume 1, Chap. IV, in the second edition of 1896 p. 82, possibly because that edition was easier to find. However, Routh stated the theorem already in the first edition of 1891, Volume 1, Chap. IV, p. 89. Although there is a change in pagination between the editions, the wording of the relevant footnote remained the same. Routh concludes his extended footnote with a caveat:

"The author has not met with these expressions for the areas of two triangles that often occur. He has therefore placed them here in order that the argument in the text may be more easily understood."

Presumably, Routh felt those circumstances had not changed in the five years between editions. On the other hand, the title of Routh's book had been used earlier by Isaac Todhunter; both had been coached by William Hopkins.

Although Routh published the theorem in his book, the first known published statement and proof was as rider (vii) on page 33 of Solutions of the Cambridge Senate-house Problems and Riders for the Year 1878, i.e., the Cambridge Mathematical Tripos of that year. The author of the problems in that section with roman numerals was James Whitbread Lee Glaisher, who also edited the entire volume. Routh was a well known Tripos coach when his book was published and was surely familiar with the content of the 1878 Tripos examination, though as his statement quoted above suggests, he had perhaps forgotten the source of the theorem in the intervening thirteen years.

Problems in this spirit have a long history in recreational mathematics and mathematical paedagogy, perhaps one of the oldest instances of being the determination of the proportions of the fourteen regions of the Stomachion board. With Routh's Cambridge in mind, the one-seventh-area triangle, associated in some accounts with Richard Feynman, shows up, for example, as Question 100, p. 80, in Euclid's Elements of Geometry (Fifth School Edition), by Robert Potts (1805--1885,) of Trinity College, published in 1859; compare also his Questions 98, 99, on the same page. Potts stood twenty-sixth Wrangler in 1832 and then, like Hopkins and Routh, coached at Cambridge. Pott's expository writings in geometry were recognized by a medal at the International Exhibition of 1862, as well as by an Hon. LL.D. from the College of William and Mary, Williamsburg, Virginia.

References

Read other articles:

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (December 2022) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged...

 

Eli (hebräisch עלי, von על ʿal, „hoch/ erhaben“) ist ein Priester des Tanach bzw. des Alten Testamentes. Biographie Eli und der junge Samuel (1780) Die Richter Israels Buch der Richter Otniël, Sohn des Kenas Ehud, Sohn des Gera Schamgar, Sohn des Anat Debora Barak, Sohn des Abinoam Gideon Abimelech Tola Jaïr Jiftach Ibzan von Bethlehem Elon Abdon, Sohn des Hillel Simson, Sohn des Manoach 1. Buch Samuel Eli Samuel Eli diente als Priester der Israeliten in der Stiftshütte in Silo....

 

Kosta RikaJulukanTicos La SeleAsosiasiFederasi Sepak Bola Kosta RikaKonfederasiCONCACAF (Amerika Utara, Tengah, dan Karibia)Sub-konfederasiUNCAF (Amerika Tengah)Pelatih Luis Fernando SuárezKaptenKeylor navasPenampilan terbanyakCelso Borges (143)Pencetak gol terbanyakRolando Fonseca (47)Stadion kandangStadion Nasional Kosta RikaKode FIFACRCPeringkat FIFATerkini 46 (26 Oktober 2023)[1]Tertinggi13 (Februari–Maret 2015)Terendah93 (Juli 1996)Peringkat EloTerkini 58 23 (18 Oktober 2023)&...

Town in Arkansas, United StatesSulphur Rock, ArkansasTownLocation of Sulphur Rock in Independence County, ArkansasCoordinates: 35°45′09″N 91°30′03″W / 35.75250°N 91.50083°W / 35.75250; -91.50083CountryUnited StatesStateArkansasCountyIndependenceArea[1] • Total1.25 sq mi (3.24 km2) • Land1.25 sq mi (3.24 km2) • Water0.00 sq mi (0.00 km2)Elevation[2]325 ft (9...

 

مسييه 55معلومات عامةجزء من درب التبانة رمز الفهرس M 55[1]NGC 6809[1]HD 185385[1] المكتشف أو المخترع نيكولاس لويس دو لكيل[2] زمن الاكتشاف أو الاختراع 16 يونيو 1752[2] الكوكبة الرامي[3] المسافة من الأرض 0٫005 megaparsec (en) [4] مركبة الميل الزاوي للحركة الذاتية −8٫49 مللي ثاني

 

Upazila in Rangpur Division, BangladeshMithapukur মিঠাপুকুরUpazilaMithapukurLocation in BangladeshCoordinates: 25°32.5′N 89°17′E / 25.5417°N 89.283°E / 25.5417; 89.283Country BangladeshDivisionRangpur DivisionDistrictRangpur DistrictArea • Total515.62 km2 (199.08 sq mi)Population (2011) • Total508,133 • Density990/km2 (2,600/sq mi)Time zoneUTC+6 (BST)WebsiteOfficial Website of M...

Gâmbia Este artigo é parte da série: Política e governo daGâmbia Presidente Yahya Jammeh Vice-presidente Isatou Njie Saidy Gabinete Assembleia Nacional Políticos Partidos políticos Eleições: 2006 (pres), 2007 (parl) Suprema Corte Divisões Distritos Relações exteriores  · Atlas verdiscutireditar

 

Television series Dengeki Sentai ChangemanTitle ScreenGenreTokusatsuSuperhero fictionScience fictionFantasyCreated byToei CompanyDeveloped byHirohisa SodaStarringHaruki HamadaKazuoki TakahashiShiro Izumi Hiroko NishimotoMai OoishiJun FujimakiShohei YamamotoYoshinori OkamotoKana FujiedaFukumi KurodaNarrated byNobuo TanakaComposerTatsumi YanoCountry of originJapanNo. of episodes55ProductionProducersMoriyoshi KatōTakeyuki SuzukiYasuhiro TomitaRunning time19 minutesProduction companiesTV AsahiNT...

 

Kruzenshtern Die Kruzenshtern in Hamburg Die Kruzenshtern in Hamburg Schiffsdaten Flagge Deutsches Reich Deutsches ReichDeutsches Reich Deutsches ReichSowjetunion SowjetunionRussland Russland andere Schiffsnamen Padua Schiffstyp Viermastbark Rufzeichen DIRR 1926-1945UCVK 1946- Heimathafen Kaliningrad seit 1991 Reederei F. Laeisz bis 1939 Bauwerft Joh. C. Tecklenborg, Wesermünde[1] Baunummer 408 Kiellegung 24. Juni 1925[2] Stapellauf 11. Juni 1926 (24. Juni ...

Corea del Nord Uniformi di gara Casa Trasferta Sport Calcio Federazione Federazione calcistica della Repubblica Popolare Democratica di Corea (KFA) Confederazione AFC Codice FIFA PRK Soprannome 천리마 (Chollima) Selezionatore Yun Jong-su Record presenze Ri Myong-Guk (118) Capocannoniere Jong Il-Gwan (26) Ranking FIFA 115º (26 ottobre 2023)[1] Esordio internazionale Cina 0 - 1 Corea del Nord Pechino, Cina; 7 ottobre 1956 Migliore vittoria Corea del Nord 21 - 0 Guam Taipei, Taiwan; ...

 

2023 Indian filmKickTheatrical release posterDirected byPrashant RajWritten byPrashant RajProduced byNaveen RajStarring Santhanam Tanya Hope CinematographySudhakar S. RajEdited byNagooran RamachandranMusic byArjun JanyaProductioncompanyFortune FilmsRelease date 1 September 2023 (2023-09-01) CountryIndiaLanguageTamil Kick is a 2023 Indian Tamil-language romantic comedy film written and directed by Prashant Raj. It is produced by Naveen Raj under the production banner Fortune Fil...

 

This article is about the THSR station, known as Xinzuoying on TRA. For the TRA-exclusive station with the same primary name, see Zuoying–Jiucheng railway station. Railway station located in Kaohsiung, Taiwan. Zuoying–Xinzuoying左營·新左營THSR and TRA railway stationChinese nameTraditional Chinese左營TranscriptionsStandard MandarinHanyu PinyinZuǒyíngBopomofoㄗㄨㄛˇ ㄧㄥˊChinese nameTraditional Chinese新左營Literal meaningNew ZuoyingTranscriptionsStandard Mand...

Historical village in Thailand This article is about the Thai village. For 2000 Thai film, see Bang Rajan (film). The monument of the eleven leaders of Bang Rachan village, as depicted on the flag of Sing Buri Province. The village of Bang Rachan (Thai: บางระจัน, pronounced [bāːŋ rā.t͡ɕān]) was in the north of Ayutthaya, the old capital of Siam, the predecessor state of modern Thailand. Today their village is located in Khai Bang Rachan District of Sing Buri Pro...

 

2020 studio album by ArashiThis Is ArashiStudio album by ArashiReleasedNovember 3, 2020 (2020-11-03)Length42:39LanguageJapaneseEnglishLabelJ StormArashi chronology Arashi Reborn Vol.1(2020) This Is Arashi(2020) Arashi studio album chronology Untitled(2017) This Is Arashi(2020) Singles from This Is Arashi BraveReleased: September 11, 2019 Turning UpReleased: November 3, 2019 In the SummerReleased: July 24, 2020 KiteReleased: July 29, 2020 Whenever You CallReleased: Septe...

 

All We Know Is FallingAlbum studio karya ParamoreDirilis26 Juli 2005 (2005-07-26)Direkam2005GenreRock alternatif,[1] pop punkDurasi35:47LabelFueled by RamenProduserJames Wisner, Mike Green[2]Kronologi Paramore All We Know Is Falling(2005) The Summer Tic EP(2006)The Summer Tic EP2006 Singel dalam album All We Know Is Falling PressureDirilis: 31 Juli 2005 EmergencyDirilis: 21 Oktober 2006 All We KnowDirilis: 26 Februari 2007 Penilaian profesional Skor ulasan Sumber Nila...

Cienciano Datos generalesNombre Club CiencianoApodo(s) El Papá de AméricaLa Furia RojaEscuadrón Rojo Conjunto IncaicoElenco ColegialLos ImperialesRojosFundación 8 de julio de 1901 (122 años)Presidente Sergio LudeñaEntrenador Óscar IbañezInstalacionesEstadio Inca Garcilaso de la VegaCapacidad 42.000Ubicación Cusco, Cusco, PerúInauguración 1921Uniforme Titular Alternativo Tercero Última temporadaLiga Liga 1(2023) 10.ºContinental Copa Sudamericana(2023) Fase preliminarTítulos ...

 

«Експедиція „Тяжіння“»англ. Mission of GravityЖанрфантастикаФормароманАвторХол КлементМоваанглійськаОпубліковано1953Країна СШАВидавництвоDoubledayХудожник обкладинкиJoseph MugnainidНаступний твірStar Lightd «Експедиція „Тяжіння“» (англ. Mission of Gravity) — науково-фантастичний роман ...

 

Parliamentary constituency in the United Kingdom, 1997 onwards Liverpool WavertreeBorough constituencyfor the House of CommonsBoundary of Liverpool Wavertree in North West EnglandCountyMerseysideElectorate63,876 (December 2019)[1]Major settlementsBroad Green, Edge Hill, WavertreeCurrent constituencyCreated1997Member of ParliamentPaula Barker (Labour)SeatsOneCreated fromLiverpool Broadgreen, Liverpool Mossley Hill1918–1983SeatsOneType of constituencyBorough constituencyCreated fromLi...

此條目需要补充更多来源。 (2020年6月24日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:關西獨立聯盟 (2014年) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 關西獨立聯盟当前赛季、赛事或届次: 2023年關西獨立聯盟賽季运动...

 

Kim Soo-hyunDoğum16 Şubat 1988 (36 yaşında)Seul, Güney KoreMeslekAktörEtkin yıllar2007 - günümüzBoy1,80 m (5 ft 11 in) Kim Soo-hyun (Hangul: 김수현; hanja: 金秀賢; doğum 16 Şubat 1988) Güney Koreli aktördür. Hayatı Kim, çekingen ve içe dönük bir çocuktu bu yüzden kimse onun eğlence sektörüne girmesini beklemiyordu. Annesi onun özgüven kazanması için liseden önce oyunculuk dersleri almasını istedi ve böylece Kim Soo-hyun...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!