Riemann's differential equation

In mathematics, Riemann's differential equation, named after Bernhard Riemann, is a generalization of the hypergeometric differential equation, allowing the regular singular points to occur anywhere on the Riemann sphere, rather than merely at 0, 1, and . The equation is also known as the Papperitz equation.[1]

The hypergeometric differential equation is a second-order linear differential equation which has three regular singular points, 0, 1 and . That equation admits two linearly independent solutions; near a singularity , the solutions take the form , where is a local variable, and is locally holomorphic with . The real number is called the exponent of the solution at . Let α, β and γ be the exponents of one solution at 0, 1 and respectively; and let α, β and γ be those of the other. Then

By applying suitable changes of variable, it is possible to transform the hypergeometric equation: Applying Möbius transformations will adjust the positions of the regular singular points, while other transformations (see below) can change the exponents at the regular singular points, subject to the exponents adding up to 1.

Definition

The differential equation is given by

The regular singular points are a, b, and c. The exponents of the solutions at these regular singular points are, respectively, α; α, β; β, and γ; γ. As before, the exponents are subject to the condition

Solutions and relationship with the hypergeometric function

The solutions are denoted by the Riemann P-symbol (also known as the Papperitz symbol)

The standard hypergeometric function may be expressed as

The P-functions obey a number of identities; one of them allows a general P-function to be expressed in terms of the hypergeometric function. It is

In other words, one may write the solutions in terms of the hypergeometric function as

The full complement of Kummer's 24 solutions may be obtained in this way; see the article hypergeometric differential equation for a treatment of Kummer's solutions.

Fractional linear transformations

The P-function possesses a simple symmetry under the action of fractional linear transformations known as Möbius transformations (that are the conformal remappings of the Riemann sphere), or equivalently, under the action of the group GL(2, C). Given arbitrary complex numbers A, B, C, D such that ADBC ≠ 0, define the quantities

and

then one has the simple relation

expressing the symmetry.

Exponents

If the Moebius transformation above moves the singular points but does not change the exponents, the following transformation does not move the singular points but changes the exponents: [2] [3]

See also

Notes

  1. ^ Siklos, Stephen. "The Papperitz equation" (PDF). Archived from the original (PDF) on 4 March 2016. Retrieved 21 April 2014.
  2. ^ Whittaker. "10.7,14.2". A course in modern analysis. pp. 201, 277. Retrieved 30 September 2021.
  3. ^ Richard Chapling. "The Hypergeometric Function and the Papperitz Equation" (PDF). Retrieved 30 September 2021.

References

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) قطار ليكابيتوس الجبلي المائلالمحطة العلويةنظرة عامةنوعقطار جبلي مائلالحالةنشطموقعتل ليكابيتوس، أثينا،  اليونانمحطات2عدد الخطوط1التشغيلافتتح18 أبريل 196...

 

Schlacht bei Kircheib Teil von: Erster Koalitionskrieg Ausschnitt aus der Karte von 1796 aus dem Buch Grundsätze der Strategie von Erzherzog Carl von Österreich Datum 19. Juni 1796 Ort bei Kircheib, Buchholz und Uckerath im Westerwald Ausgang Österreichischer Sieg Konfliktparteien Frankreich 1804 Frankreich Habsburgermonarchie Österreich Befehlshaber Frankreich 1804 Jean-Baptiste Kléber Habsburgermonarchie Paul Kray von Krajowa Truppenstärke 24.000 14.000 Verluste 1.500 400 Sc...

 

Grugahalle Juni 2009, rechts das im Bau befindliche Messehotel Sicht aus dem Grugapark Die Grugahalle ist eine 1958 errichtete, multifunktionale Veranstaltungshalle im Essener Stadtteil Rüttenscheid, die bis zu 10.000 Besuchern Platz bietet und am 26. Oktober 2000 unter Denkmalschutz gestellt wurde.[1] Sie gehört zum Gruga-Komplex, zu dem auch der Grugapark, das Grugabad und die Messe Essen gehören. Inhaltsverzeichnis 1 Architektur 2 Geschichte 2.1 Auszug bisheriger Veranstalt...

Dewan Perwakilan RakyatPapua BaratPeriode 2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahDidirikan2003Sesi baru dimulai2 Oktober 2019PimpinanKetuaOrgenes Wonggor (Golkar) sejak 5 Desember 2019 Wakil Ketua IRenly Mansawan (NasDem) sejak 5 Desember 2019 Wakil Ketua IISaleh Siknun (PDI-P) sejak 5 Desember 2019 Wakil Ketua IIIYongki Roberto Fonataba (Demokrat) sejak 5 Desember 2019 KomposisiAnggota56Partai & kursiPemerintah (19)   PDI-P (7)   NasDe...

 

1959 studio album by The MastersoundsFlower Drum SongStudio album by The MastersoundsReleased1959RecordedDecember 4, 1958 Los Angeles, CAGenreJazzLabelWorld Pacific WP 1252ProducerRichard BockThe Mastersounds chronology Kismet(1958) Flower Drum Song(1959) Ballads & Blues(1959) Flower Drum Song (subtitled A Jazz Interpretation by the Mastersounds) is an album by The Mastersounds led by vibraphonist Buddy Montgomery with pianist Richie Crabtree, bassist Monk Montgomery and drummer B...

 

Architectural style Basilica of San Gavino, Porto Torres The Sardinian Romanesque is the Romanesque architectural style that developed in Sardinia. The Romanesque architecture in Sardinia has had a remarkable development since the early origins, during the Giudicati era, and for a long period. His expressions, although autonomous, are not classifiable in a recognizable image, since in the island the Romanesque manifested itself with unusual results but in numerous forms;[1] this is du...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pathfinding – berita · surat kabar · buku · cendekiawan · JSTOR Jalur yang setara antara A dan B dalam lingkungan 2DPathfinding atau pathing adalah merencanakan, dengan aplikasi komputer, dari rute terpe...

 

Former pub in Chelsea, London The Markham Arms is a former pub at 138 King's Road, London SW3. It closed as a pub in the early 1990s, and is now a branch of the Santander bank.[1][2][3] It is a Grade II listed building, built in the mid-19th century.[4] References ^ Markham Arms, Chelsea. Whatpub.com. Retrieved 22 November 2016. ^ Markham Arms, 138 Kings Road, Chelsea, London. Pubshistory.com. 2 April 2015. Retrieved 22 November 2016. ^ Markham Arms, King's Roa...

 

American politician (born 1955) For other uses, see Kevin Brady (disambiguation). Kevin BradyRanking Member of the House Ways and Means CommitteeIn officeJanuary 3, 2019 – January 3, 2023Preceded byRichard NealSucceeded byRichard NealChair of the House Ways and Means CommitteeIn officeNovember 5, 2015 – January 3, 2019Preceded byPaul RyanSam Johnson (Acting)Succeeded byRichard NealMember of the U.S. House of Representativesfrom Texas's 8th districtIn officeJa...

2011 Indian Kannada-language comedy thriller film VishnuvardhanaVishnuvardhana PosterDirected byPon KumaranScreenplay byPon KumaranKalidasShrikanthStory byPon KumaranProduced byDwarakishStarringSudeepaBhavanaPriyamaniSonu SoodCinematographyRajarathnamEdited byGautham RajuMusic byV. HarikrishnaProductioncompanyDwarkish StudiosDistributed byJayanna FilmsRelease date 8 December 2011 (2011-12-08) (India) Running time169 minutesCountryIndiaLanguageKannadaBox office₹ 7 crore ...

 

Long Island Rail Road branch This article is about the Long Island Rail Road line. For the section of the route which was incorporated into the New York City Subway in the 1950s, see IND Rockaway Line. Far Rockaway BranchFar Rockaway Branch train 2820 departing Cedarhurst Station.OverviewStatusOperationalOwnerLong Island Rail RoadLocaleQueens and Nassau County, New York, USTerminiValley StreamFar RockawayStations11ServiceTypeCommuter railSystemLong Island Rail RoadServices  Far Rock...

 

Dragon Ball franchise fictional character Fictional character BulmaDragon Ball characterSketch of Bulma by Akira ToriyamaFirst appearanceDragon Ball chapter #1 Bulma and Son Goku, December 3, 1984 (Weekly Shōnen Jump 1984 #51)Created byAkira ToriyamaPortrayed byEmmy Rossum (Dragonball Evolution)Voiced byJapaneseHiromi Tsuru (1986–2017)Aya Hisakawa (2018–present)[1] English Wendee Lee (Harmony Gold and Bang Zoom!)Lalainia Lindbjerg, Maggie Blue O'Hara, and France Perras (Ocean)Les...

Eisenzeitliche Funde im Sauerland sind Funde aus der vorrömischen Eisenzeit (etwa 800 v. Chr. bis zur römischen Okkupation). Neben Funden in Höhlen, die wahrscheinlich kultische Hintergründe haben, sind insbesondere verschiedene Wallburgen bekannt. Dagegen gibt es nur wenige direkte Siedlungsfunde. Inhaltsverzeichnis 1 Kulturbeziehungen 2 Siedlungs- und Kultfunde 3 Bergbau- und Verhüttungsreste 4 Wallburgen 5 Chronologie der Funde 6 Literatur 7 Einzelnachweise Kulturbeziehungen Die Bewoh...

 

Refugee camp in Irbid Governorate, JordanIrbid Camp مخيم إربدRefugee campIrbid CampLocation in JordanCoordinates: 32°33′N 35°51′E / 32.550°N 35.850°E / 32.550; 35.850Country JordanGovernorateIrbid GovernorateArea • Total0.24 km2 (0.09 sq mi)Population (2019) • Total29,000Time zoneUTC+2 (Eastern European Standard Time) • Summer (DST)UTC+3 (Arabia Standard Time) Irbid Camp (Arabic: مخيم إربد)...

 

Group of Bible colleges African Bible CollegesTypePrivateEstablished1976[1]LocationLiberia, Malawi, UgandaCampusPeri-UrbanFounderJack and Nell Chinchen[2]Websiteafricanbiblecolleges.net African Bible Colleges is an entity comprising multiple Bible college in Africa. The three campuses offer university-level education from a Christian perspective, with the aim of training men and women for Christian leadership and service. History African Bible Colleges was founded in 1976 with...

One of nine Islamic saints in Java Sunan KudusBorn1500Jerusalem, Ottoman EmpireDied1550 (aged 50)Kudus, Demak SultanateEmployerDemak SultanateOrganizationWalisongoTitleWaliyyul Ilmi Sunan Kudus (born Ja'far Shadiq; 1500-1550), founder of Kudus, is considered to be one of the Wali Sanga of Java, Indonesia. He is said to have originated the wayang golek,[1] and founded the masjid at Kudus using (it is said) the doors from the palace of Majapahit. History This section does not cite any s...

 

2002 book by Carolyn Meyer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Doomed Queen Anne – news · newspapers · books · scholar · JSTOR (November 2008) (Learn how and when to remove this template message) Doomed Queen Anne AuthorCarolyn MeyerCountry United StatesLanguageEnglishSeriesYoung RoyalsGenre...

 

У этого термина существуют и другие значения, см. Михайло Ломоносов (значения). Михайло Ломоносов Макет спутника Заказчик МГУ Производитель ОАО «Корпорация «ВНИИЭМ» Оператор МГУ Задачи исследование транзиентных световых явлений верхней атмосферы Земли; радиационных х...

Département de l'Oise. La liste des cavités naturelles les plus longues de l'Oise recense sous la forme d'un tableau, les cavités souterraines naturelles connues, dont le développement est supérieur à vingt mètres. La communauté spéléologique considère qu'une cavité souterraine naturelle n'existe vraiment qu'à partir du moment où elle est « inventée » c'est-à-dire découverte (ou redécouverte), inventoriée, topographiée et publiée. Bien sûr, la réalité physi...

 

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Andra Ramadhan – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Andra RamadhanInformasi latar belakangNama lah...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!