Ramanujan's master theorem

In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan,[1] is a technique that provides an analytic expression for the Mellin transform of an analytic function.

Page from Ramanujan's notebook stating his Master theorem.

The result is stated as follows:

If a complex-valued function has an expansion of the form

then the Mellin transform of is given by

where is the gamma function.

It was widely used by Ramanujan to calculate definite integrals and infinite series.

Higher-dimensional versions of this theorem also appear in quantum physics through Feynman diagrams.[2]

A similar result was also obtained by Glaisher.[3]

Alternative formalism

An alternative formulation of Ramanujan's master theorem is as follows:

which gets converted to the above form after substituting and using the functional equation for the gamma function.

The integral above is convergent for subject to growth conditions on .[4]

Proof

A proof subject to "natural" assumptions (though not the weakest necessary conditions) to Ramanujan's master theorem was provided by G. H. Hardy[5](chapter XI) employing the residue theorem and the well-known Mellin inversion theorem.

Application to Bernoulli polynomials

The generating function of the Bernoulli polynomials is given by:

These polynomials are given in terms of the Hurwitz zeta function:

by for . Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation:[6]

which is valid for .

Application to the gamma function

Weierstrass's definition of the gamma function

is equivalent to expression

where is the Riemann zeta function.

Then applying Ramanujan master theorem we have:

valid for .

Special cases of and are

Application to Bessel functions

The Bessel function of the first kind has the power series

By Ramanujan's master theorem, together with some identities for the gamma function and rearranging, we can evaluate the integral

valid for .

Equivalently, if the spherical Bessel function is preferred, the formula becomes

valid for .

The solution is remarkable in that it is able to interpolate across the major identities for the gamma function. In particular, the choice of gives the square of the gamma function, gives the duplication formula, gives the reflection formula, and fixing to the evaluable or gives the gamma function by itself, up to reflection and scaling.

Bracket integration method

The bracket integration method (method of brackets) applies Ramanujan's master theorem to a broad range of integrals.[7] The bracket integration method generates the integrand's series expansion, creates a bracket series, identifies the series coefficient and formula parameters and computes the integral.[8]

Integration formulas

This section identifies the integration formulas for integrand's with and without consecutive integer exponents and for single and double integrals. The integration formula for double integrals may be generalized to any multiple integral. In all cases, there is a parameter value or array of parameter values that solves one or more linear equations derived from the exponent terms of the integrand's series expansion.

Consecutive integer exponents, 1 variable

This is the function series expansion, integral and integration formula for an integral whose integrand's series expansion contains consecutive integer exponents.[9] The parameter is a solution to this linear equation.

General exponents, 1 variable

Applying the substitution generates the function series expansion, integral and integration formula for an integral whose integrand's series expansion may not contain consecutive integer exponents.[8] The parameter is a solution to this linear equation.

Consecutive integer exponents, double integral

This is the function series expansion, integral and integration formula for a double integral whose integrand's series expansion contains consecutive integer exponents.[10] The parameters and are solutions to these linear equations.

General exponents, double integral

This section describes the integration formula for a double integral whose integrand's series expansion may not contain consecutive integer exponents. Matrices contain the parameters needed to express the exponents in a series expansion of the integrand, and the determinant of invertible matrix is .[11] Applying the substitution generates the function series expansion, integral and integration formula for a double integral whose integrand's series expansion may not contain consecutive integer exponents.[10] The integral and integration formula are[12][13] The parameter matrix is a solution to this linear equation.[14] .

Positive complexity index

In some cases, there may be more sums then variables. For example, if the integrand is a product of 3 functions of a common single variable, and each function is converted to a series expansion sum, the integrand is now a product of 3 sums, each sum corresponding to a distinct series expansion.

  • The number of brackets is the number of linear equations associated with an integral. This term reflects the common practice of bracketing each linear equation.[15]
  • The complexity index is the number of integrand sums minus the number of brackets (linear equations). Each series expansion of the integrand contributes one sum.[15]
  • The summation indices (variables) are the indices that index terms in a series expansion. In the example, there are 3 summation indices and because the integrand is a product of 3 series expansions.[16]
  • The free summation indices (variables) are the summation indices that remain after completing all integrations. Integration reduces the number of sums in the integrand by replacing the series expansions (sums) with an integration formula. Therefore, there are fewer summation indices after integration. The number of chosen free summation indices equals the complexity index.[16]

Integrals with a positive complexity index

The free summation indices are elements of set . The matrix of free summation indices is and the coefficients of the free summation indices is matrix . The remaining indices are set containing indices . Matrices and contain matrix elements that multiply or sum with the non-summation indices. The selected free summation indices must leave matrix non-singular. . This is the function's series expansion, integral and integration formula.[17] The parameters are linear functions of the parameters .[18] .

Bracket series

Table 1. Bracket series notations
Notation type Power series notation Bracket series notation
Indicator
Multi-indicator
Bracket

Bracket series notations are notations that substitute for common power series notations (Table 1).[19] Replacing power series notations with bracket series notations transforms the power series to a bracket series. A bracket series facilitates identifying the formula parameters needed for integration. It is also recommended to replace a sum raised to a power:[19] with this bracket series expression:

Algorithm

This algorithm describes how to apply the integral formulas.[8][9][20]

Table 2. Integral formulas
Complexity index Integral formula
Zero, single integral
Zero, multiple integral
Positive
Input Integral expression
Output Integral value or integral cannot be assigned a value
  1. Express the integrand as a power series.
  2. Transform the integrand's power series to a bracket series.
  3. Obtain the complexity index, formula parameters and series coefficient function.
    1. Complexity index is the number of integrand sums minus number of brackets.
    2. Parameters or array are solutions to linear equations (zero complexity index, single integral), (zero complexity index, single integral) or (positive complexity index).
    3. Identify parameter or (zero complexity index, single integral) or compute (all other cases) from the associated linear equations.
    4. Identify the series coefficient function of the bracket series.
  4. If the complexity index is negative, return integral cannot be assigned a value.
  5. If the complexity index is zero, select the formula from table 2 for zero complexity index, single or multiple integral, compute the integral value with this formula, and return this integral value.
  6. If the complexity index is positive, select the formula from table 2 for positive complexity index, and compute the integral value as a series expansion with this formula for all possible choices of the free summation indices. Select the lowest complexity index, convergent series expansion, adding series that converge in the same region.
    1. If all series expansions are divergent series or null series (all series terms zero), then return integral cannot be assigned a value.
    2. If the series expansion is non-null and non-divergent, return this series expansion as the integral value.

Examples

Zero complexity index

The bracket method will integrate this integral.

  1. Express the integrand as a power series.
  2. Transform the power series to a bracket series.
  3. Obtain the complexity index, formula parameters and series coefficient function.
  4. Complexity index is zero.
    .
  5. Use table 2 to compute the integral.

Positive complexity index

The bracket method will integrate this integral. 1. Express the integrand as a power series. Use the sum raised to a power formula. 2. Transform the power series to a bracket series. 3. Obtain the complexity index, formula parameters and series coefficient function.

Complexity index is 1 as 3 sums and 2 brackets.
Select as the free index, . The linear equations, solutions, determinant and series coefficient are

4. Use table 2 to compute the integral

Citations

References

  • Amdeberhan, Tewodros; Gonzalez, Ivan; Harrison, Marshall; Moll, Victor H.; Straub, Armin (2012). "Ramanujan's Master Theorem". The Ramanujan Journal. 29 (1–3): 103–120. CiteSeerX 10.1.1.232.8448. doi:10.1007/s11139-011-9333-y. S2CID 8886049.
  • Ananthanarayan, B.; Banik, Sumit; Friot, Samuel; Pathak, Tanay (2023). "Method of Brackets: Revisiting a technique for calculating Feynman integrals and certain definite integrals". Physical Review D. 108 (8): 085001. Bibcode:2023PhRvD.108h5001A. doi:10.1103/PhysRevD.108.085001.
  • Berndt, B. (1985). Ramanujan's Notebooks, Part I. New York: Springer-Verlag.
  • Espinosa, Olivier; Moll, Victor H. (2002). "On some integrals involving the Hurwitz zeta function. II". Ramanujan Journal. 6 (4): 449–468. doi:10.1023/A:1021171500736. MR 2125010.
  • Glaisher, J.W.L. (1874). "A new formula in definite integrals". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 48 (315): 53–55. doi:10.1080/14786447408641072.
  • González, Iván; Moll, V.H.; Schmidt, Iván (2011). "A generalized Ramanujan Master Theorem applied to the evaluation of Feynman diagrams". arXiv:1103.0588 [math-ph].
  • Gonzalez, Ivan; Moll, Victor H. (2010). "Definite integrals by the method of brackets. Part 1". Advances in Applied Mathematics. 45 (1): 50–73. doi:10.1016/j.aam.2009.11.003.
  • Gonzalez, Ivan; Kohl, Karen; Jiu, Lin; Moll, Victor H. (1 January 2017). "An extension of the method of brackets. Part 1". Open Mathematics. 15 (1): 1181–1211. arXiv:1707.08942. doi:10.1515/math-2017-0100. ISSN 2391-5455.
  • Gonzalez, Ivan; Kohl, Karen; Jiu, Lin; Moll, Victor H. (March 2018). "The Method of Brackets in Experimental Mathematics". Frontiers in Orthogonal Polynomials and q -Series. WORLD SCIENTIFIC. pp. 307–318. doi:10.1142/9789813228887_0016. ISBN 978-981-322-887-0.
  • Gonzalez, Ivan; Jiu, Lin; Moll, Victor H. (2020). "An extension of the method of brackets. Part 2". Open Mathematics. 18 (1): 983–995. arXiv:1707.08942. doi:10.1515/math-2020-0062. ISSN 2391-5455.
  • Gonzalez, Ivan; Kondrashuk, Igor; Moll, Victor H.; Recabarren, Luis M. (2022). "Mellin–Barnes integrals and the method of brackets". The European Physical Journal C. 82 (1): 28. arXiv:2108.09421. Bibcode:2022EPJC...82...28G. doi:10.1140/epjc/s10052-021-09977-x. ISSN 1434-6052.
  • Hardy, G.H. (1978). Ramanujan: Twelve lectures on subjects suggested by his life and work (3rd ed.). New York, NY: Chelsea. ISBN 978-0-8284-0136-4.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2023. Teori akomodasi komunikasi (bahasa Inggris: Communication Accomodation Theory—CAT) adalah teori yang dikembangkan oleh Howard Giles menyatakan bahwa di saat pembicara berinteraksi, mereka memodifikasi cara bicara, pola suara, gestur tubuh untuk meny...

 

 

American automotive media company Motor Trend Group, LLCFormerly Source Interlink Media (2007–2014) TEN: The Enthusiast Network (2014–2018) TypeSubsidiaryIndustryMass mediaFounded2007HeadquartersSilver Spring, Maryland, United StatesProductsMagazinesTelevisionOwnerWarner Bros. DiscoveryParentWarner Bros. Discovery SportsWebsitewww.motortrendgroup.com Motor Trend Group, LLC, formerly known as Source Interlink Media and TEN: The Enthusiast Network, is a media company that specializes in ent...

 

 

Преступность в Мьянме (Бирма) в настоящее время присутствует в различных формах. Содержание 1 Виды преступности 1.1 Убийства 1.2 Терроризм 1.3 Коррупция 1.4 Преступления против иностранных граждан 1.5 Производство опиума и метамфетамина 1.6 Проституция 1.7 Военные преступления 2 П

فلافيوس هانيبليانوس   معلومات شخصية تاريخ الميلاد سنة 315  الوفاة سنة 337 (21–22 سنة)  القسطنطينية  مواطنة روما القديمة  الزوجة قنسطنطينا  الأب فلافيوس دالماتيوس  إخوة وأخوات دالماتيوس  الحياة العملية المهنة سياسي،  وعسكري  تعديل مصدري - تعديل   فل...

 

 

Acireale Armoiries Cathédrale d'Acireale. Nom sicilien Jaciriali Administration Pays Italie Région Sicile  Province Catane  Code postal 95024 Code ISTAT 087004 Code cadastral A028 Préfixe tel. 095 Démographie Gentilé acesi Population 53 122 hab. (31-12-2010[1]) Densité 1 362 hab./km2 Géographie Coordonnées 37° 36′ 45″ nord, 15° 09′ 56″ est Altitude Min. 102 mMax. 102 m Superficie 3 900 ha =&...

 

 

King of Egypt, 80–51 BC Ptolemy XII AuletesPtolemaĩos Néos Diónysos Philopátōr Philádelphos (Πτολεμαῖος Νέος Διόνυσος Φιλοπάτωρ Φιλάδελφος)Bust of Ptolemy XII housed at the Department of Greek, Etruscan and Roman Antiquities at the Louvre in ParisPharaohKing of the Ptolemaic KingdomReignc. 80–58 BC with Cleopatra V (79–69 BC)c. 55–51 BCPredecessorPtolemy XI (80 BC)Berenice III (79 BC)SuccessorCleopatra V and Berenice IV (58 B...

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (січень 2019) Command Prompt (cmd.exe) Командний рядок у Windows 11 Консоль операційної систем...

 

 

Retrato de Blas Infante, realizado sobre azulejos, situado en la avenida Blas Infante de Jerez. El Regionalismo andaluz o el Nacionalismo andaluz surgió a finales del siglo XIX, como todos los regionalismos de España. Su nacimiento viene dado por la reacción frente al centralismo impuesto del sistema liberal, unido a los movimientos románticos que defendían la identidad de los pueblos y la corriente federalista muy difundida durante la I República. Estos movimientos tuvieron un fuerte a...

 

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 10 de julio de 2014. Para otros usos de este término, véase Cantoura (cráter). Cantaura Parroquia BanderaEscudo Himno: Himno de Cantaura , Letra: Manuel Careño Música: Rafael Ramírez CantauraLocalización de Cantaura en Venezuela CantauraLocalización de Cantaura en AnzoáteguiCoordenadas 9°18′02″N 64°21′23″O / 9.300526, -64.356365Idioma oficial ...

Siege of Fort TexasPart of Mexican–American WarMajor Jacob Brown with his sword, commanding the defenders of Fort Texas, one of which is holding a sign stating, Death or Victory.DateMay 3–9, 1846Locationnear Brownsville, TexasResult American victory[1] Mexican withdrawal, siege liftedBelligerents  United States MexicoCommanders and leaders Jacob Brown  † Earl Van Dorn Mariano Arista Francisco Mejía Pedro de AmpudiaStrength 500 infantry men 1,600[2]14 artil...

 

 

Award 1949 Nobel Prize in LiteratureWilliam Faulknerfor his powerful and artistically unique contribution to the modern American novel.Date 10 November 1950 (announcement) 10 December 1950 (ceremony) LocationStockholm, SwedenPresented bySwedish AcademyFirst awarded1901WebsiteOfficial website ← 1948 · Nobel Prize in Literature · 1950 → The 1949 Nobel Prize in Literature was awarded the American author William Faulkner (1897–1962) for his powerful and artisti...

 

 

Yacimiento arqueológico de Doña Blanca bien de interés culturalbien de interés culturalbien de interés culturalbien de interés culturalbien de interés cultural y bien de interés cultural Localización geográficaCoordenadas 36°37′38″N 6°09′40″O / 36.627143, -6.161248Localización administrativaPaís España EspañaComunidad Andalucía AndalucíaProvincia Cádiz CádizLocalidad El Puerto de Santa MaríaHistoriaTipo Zona arqueológica Bien de int...

Chinese web services company For the medieval person, see Family of Demetrius II of Georgia. Not to be confused with Beidu (disambiguation), BeiDou, Baidul, or Badu (disambiguation). Baidu, Inc.Corporate headquartersTypePublicTraded asNasdaq: BIDUSEHK: 9888IndustryInternetArtificial intelligenceCloud computingFoundedJanuary 18, 2000; 23 years ago (2000-01-18)FounderRobin LiEric XuHeadquartersBeijing, ChinaArea servedWorldwideKey peopleRobin Li (co-founder & CEO...

 

 

Subway line in Seoul, South Korea Line 5 4th Generation Line 5 trainOverviewNative name5호선(五號線)O HoseonStatusOperationalTerminiBanghwaHanam Geomdansan / MacheonStations57ServiceTypeRapid transitSystemSeoul Metropolitan SubwayOperator(s)Seoul MetroHistoryOpened15 November 1995TechnicalLine length58.9 km (36.6 mi)[1]Number of tracks2Electrification1,500 V DC overhead catenary Route map Seoul Subway Line 5 of the Seoul Metropolitan Subway, dubbed the pur...

 

 

Dit is een lijst van vlaggen van Estland. Nationale vlag (per FIAV-codering) Zie Vlag van Estland voor het hoofdartikel over dit onderwerp. Civiele vlag Staatsvlag Oorlogsvlag Te land Te water Historische vlaggen 'Zie het hoofdartikel: Vlag van Estland' Vlaggen van deelgebieden Zie Lijst van vlaggen van Estische deelgebieden en Lijst van vlaggen van Estische gemeenten voor de overzichtsartikels over dit onderwerp. Vlaggen van bestuurders Vlag Periode Functie Beschrijving Presidentiële vlag (...

أكادير ندياسين تقسيم إداري البلد المغرب  الجهة كلميم واد نون الإقليم سيدي إفني الدائرة الأخصاص الجماعة القروية سيدي حساين أو علي المشيخة إد غزال إد شعود السكان التعداد السكاني 63 نسمة (إحصاء 2004)   • عدد الأسر 9 تعديل مصدري - تعديل   أكادير ندياسين هو دُوَّار يقع بجماعة...

 

 

New York City Subway station in the Bronx New York City Subway station in The Bronx, New York Nereid Avenue ​ New York City Subway station (rapid transit)Northbound platformStation statisticsAddressNereid Avenue (East 238th Street) & White Plains RoadBronx, NY 10466BoroughThe BronxLocaleWakefieldCoordinates40°53′53″N 73°51′14″W / 40.898°N 73.854°W / 40.898; -73.854DivisionA (IRT)[1]LineIRT White Plains Road LineServices ...

 

 

Calendar year Millennium: 2nd millennium Centuries: 15th century 16th century 17th century Decades: 1530s 1540s 1550s 1560s 1570s Years: 1554 1555 1556 1557 1558 1559 1560 1557 by topic Arts and science Architecture Art Literature Music Science Leaders Political entities State leaders Colonial governors Religious leaders Birth and death categories Births – Deaths Establishments and disestablishments categories Establishments – Disestablishments Works category Works vte...

Keuskupan Saint John's–BasseterreDioecesis Sancti Ioannis–ImatelluranusKatolik Konkatedral Maria Dikandung Tanpa Noda, BasseterreLokasiNegara Anguilla Antigua dan Barbuda Kepulauan Virgin Britania Raya Montserrat Saint Kitts dan NevisProvinsi gerejawiCastries di Saint LuciaStatistikLuas1.059 km2 (409 sq mi)Populasi- Total- Katolik(per 2015)196.09817,245 (8.8%)Paroki10Imam18InformasiDenominasiGereja Katolik RomaRitusRitus LatinPen...

 

 

Painting by Thomas Eakins The Chess PlayersArtistThomas EakinsYear1876TypeOil on wood panelDimensions29.8 cm × 42.6 cm (11+3⁄4 in × 16+3⁄4 in)LocationMetropolitan Museum of Art, New York The Chess Players is an 1876 genre painting by Thomas Eakins, Goodrich catalogue #96. It is in the collection of the Metropolitan Museum of Art, in New York. Description It is a small oil on wood panel depicting Eakins' father Benjamin observing a chess ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!