Rader's FFT algorithm

Rader's algorithm (1968),[1] named for Charles M. Rader of MIT Lincoln Laboratory, is a fast Fourier transform (FFT) algorithm that computes the discrete Fourier transform (DFT) of prime sizes by re-expressing the DFT as a cyclic convolution (the other algorithm for FFTs of prime sizes, Bluestein's algorithm, also works by rewriting the DFT as a convolution).

Since Rader's algorithm only depends upon the periodicity of the DFT kernel, it is directly applicable to any other transform (of prime order) with a similar property, such as a number-theoretic transform or the discrete Hartley transform.

The algorithm can be modified to gain a factor of two savings for the case of DFTs of real data, using a slightly modified re-indexing/permutation to obtain two half-size cyclic convolutions of real data;[2] an alternative adaptation for DFTs of real data uses the discrete Hartley transform.[3]

Winograd extended Rader's algorithm to include prime-power DFT sizes ,[4][5] and today Rader's algorithm is sometimes described as a special case of Winograd's FFT algorithm, also called the multiplicative Fourier transform algorithm (Tolimieri et al., 1997),[6] which applies to an even larger class of sizes. However, for composite sizes such as prime powers, the Cooley–Tukey FFT algorithm is much simpler and more practical to implement, so Rader's algorithm is typically only used for large-prime base cases of Cooley–Tukey's recursive decomposition of the DFT.[3]

Algorithm

Visual representation of a DFT matrix in Rader's FFT algorithm. The array consists of colored clocks representing a DFT matrix of size 11. By permuting rows and columns (except the first of each) according to sequences generated by the powers of the primitive root of 11, the original DFT matrix becomes a circulant matrix. Multiplying a data sequence with a circulant matrix is equivalent to the cyclic convolution with the matrix's row vector. This relation is an example of the fact that the multiplicative group is cyclic: .

Begin with the definition of the discrete Fourier transform:

If N is a prime number, then the set of non-zero indices forms a group under multiplication modulo N. One consequence of the number theory of such groups is that there exists a generator of the group (sometimes called a primitive root, which can be found by exhaustive search or slightly better algorithms[7]). This generator is an integer g such that for any non-zero index n and for a unique (forming a bijection from q to non-zero n). Similarly, for any non-zero index k and for a unique , where the negative exponent denotes the multiplicative inverse of . That means that we can rewrite the DFT using these new indices p and q as:

(Recall that xn and Xk are implicitly periodic in N, and also that (Euler's identity). Thus, all indices and exponents are taken modulo N as required by the group arithmetic.)

The final summation, above, is precisely a cyclic convolution of the two sequences aq and bq (of length N–1, because ) defined by:

Evaluating the convolution

Since N–1 is composite, this convolution can be performed directly via the convolution theorem and more conventional FFT algorithms. However, that may not be efficient if N–1 itself has large prime factors, requiring recursive use of Rader's algorithm. Instead, one can compute a length-(N–1) cyclic convolution exactly by zero-padding it to a length of at least 2(N–1)–1, say to a power of two, which can then be evaluated in O(N log N) time without the recursive application of Rader's algorithm.

This algorithm, then, requires O(N) additions plus O(N log N) time for the convolution. In practice, the O(N) additions can often be performed by absorbing the additions into the convolution: if the convolution is performed by a pair of FFTs, then the sum of xn is given by the DC (0th) output of the FFT of aq plus x0, and x0 can be added to all the outputs by adding it to the DC term of the convolution prior to the inverse FFT. Still, this algorithm requires intrinsically more operations than FFTs of nearby composite sizes, and typically takes 3–10 times as long in practice.

If Rader's algorithm is performed by using FFTs of size N–1 to compute the convolution, rather than by zero padding as mentioned above, the efficiency depends strongly upon N and the number of times that Rader's algorithm must be applied recursively. The worst case would be if N–1 were 2N2 where N2 is prime, with N2–1 = 2N3 where N3 is prime, and so on. Such Nj are called Sophie Germain primes, and such a sequence of them is called a Cunningham chain of the first kind. However, the alternative of zero padding can always be employed if N–1 has a large prime factor.

References

  1. ^ C. M. Rader, "Discrete Fourier transforms when the number of data samples is prime," Proc. IEEE 56, 1107–1108 (1968).
  2. ^ S. Chu and C. Burrus, "A prime factor FTT [sic] algorithm using distributed arithmetic," IEEE Transactions on Acoustics, Speech, and Signal Processing 30 (2), 217–227 (1982).
  3. ^ a b Matteo Frigo and Steven G. Johnson, "The Design and Implementation of FFTW3," Proceedings of the IEEE 93 (2), 216–231 (2005).
  4. ^ S. Winograd, "On Computing the Discrete Fourier Transform", Proc. National Academy of Sciences USA, 73(4), 1005–1006 (1976).
  5. ^ S. Winograd, "On Computing the Discrete Fourier Transform", Mathematics of Computation, 32(141), 175–199 (1978).
  6. ^ R. Tolimieri, M. An, and C.Lu, Algorithms for Discrete Fourier Transform and Convolution, Springer-Verlag, 2nd ed., 1997.
  7. ^ Donald E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd edition, section 4.5.4, p. 391 (Addison–Wesley, 1998).

Read other articles:

|місце_народження= |сторінка_в_інтернеті= |партія= |місце_смерті= |Alma_mater= |підпис_зображення= |дата_народження= Вячеслав Олександрович Богуслаєв Народився 28 жовтня 1938(1938-10-28) (85 років)Уральськ, Казахська РСР, СРСРКраїна  СРСР →  Україна,  Росія[1]Національність рос...

 

Voci principali: Paolo Borsellino, Bombe del 1992-1993. Strage di via D'AmelioattentatoVia D'Amelio dopo l'attentato TipoAutobomba Data19 luglio 199216:59 Luogovia Mariano D'Amelio, Palermo Stato Italia Regione Sicilia Coordinate38°08′35.16″N 13°21′16.92″E / 38.1431°N 13.3547°E38.1431; 13.3547Coordinate: 38°08′35.16″N 13°21′16.92″E / 38.1431°N 13.3547°E38.1431; 13.3547 Armaesplosivi (Semtex e TNT) ObiettivoPaolo Borsellino Responsab...

 

Intento de golpe de Estado en Marruecos de 1971 محاولة انقلاب الصخيرات Parte de Años de plomo Tropas leales al rey Hasan II defienden el cuartel general de la SNRT durante el intento de golpe de Estado de Skhirat en 1971.Contexto del acontecimientoTambién conocido como Intento de golpe de SkhiratFecha 10 de julio de 1971Sitio Marruecos MarruecosImpulsores miembros de Fuerzas Armadas de MarruecosMotivos Años de plomo, corrupción , malestar en el Ejército Marroquí...

2002 book by Leonard Lawlor This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (September 2020) Derrida and HusserlThe Basic Problem of Phenomenology AuthorLeonard LawlorSubjectContinental philosophyPublisherIndiana University PressPublication date1 June 2002Media typePrintPages280 pp (paperback)ISBN978-0253215086 Derrida and Husserl: The Basic Problem of Phenomenology is a 2002 book by Leonard Lawlor. ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Aleksandra Fyodorovna AkimovaNama asliАлександра Фёдоровна АкимоваLahir5 Mei 1922Skopinsky, Kegubernuran Ryazan, Republik Sosialis Federatif Soviet RusiaMeninggal29 Desember 2012 (usia 90)Moskwa, Federasi RusiaPengabdian ...

 

Pumpu Un sector de Pumpu atravesado por el río Yawarmayo. Al fondo, el bosque de piedras de HuayllayLocalización geográficaContinente AméricaRegión Andes CentralesCordillera AndesEcorregión PunaCoordenadas 10°55′17″S 76°16′53″O / -10.921305555556, -76.281444444444Localización administrativaPaís PerúDivisión Departamento de PascoSubdivisión Provincia de PascoLocalidad Distrito de ViccoHistoriaTipo LlactaUso original Capital provincial y centro ganadero...

1951 film Mamma Mia, What an Impression!Directed byRoberto SavareseWritten byAlberto Sordi Cesare ZavattiniProduced byAlberto Sordi Vittorio De SicaStarringAlberto Sordi Giovanna Pala Carlo GiustiniCinematographyCarlo MontuoriEdited byEraldo Da RomaMusic byAngelo Francesco LavagninoProductioncompanyProduzione Films ComiciDistributed byENICRelease date21 March 1951Running time98 minutesCountryItalyLanguageItalian Sordi and Pala Pala, Giustini and Sordi Mamma Mia, What an Impression! (Italian: ...

 

Tiger population on the Indian subcontinent This article is about a tiger population. For other uses of 'Bengal tiger' and related terms, see Bengal tiger (disambiguation). For other uses of 'Royal Bengal tiger' and related terms, see Royal Bengal tiger (disambiguation). Bengal tiger Adult male in Kanha Tiger Reserve, India Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Suborder: Feliformia Family: Felidae Subfamily: Pantherinae...

 

ヴァーリ 司法神 弓を持って森を歩くヴァーリカール・エイミル・ドプラー(英語版)のイラスト(1882年)親 オーディン, リンド兄弟 ヴィザール(異母兄弟)テンプレートを表示 17世紀のアイスランドの写本『AM 738 4to』に描かれたヴァーリ。 ヴァーリ(ヴァリとも)(Vali、Váli)は、北欧神話に登場する司法神の一人。 『エッダ』 『古エッダ』の『巫女の予言』[1]...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Resistance 2003 film – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 2003 American filmResistanceTheatrical release posterDirected byTodd KomarnickiWritten byTodd KomarnickiAnita ShreveBased onR...

 

Медаль «В память 25-летия шефства Николая I в 6-м кирасирском полку прусской армии» Страна Российская империя Тип медаль Кому вручалась солдатам и офицерам прусского кирасирского полка №6 Статистика Дата учреждения март 1842 года Учредитель Николай I Количество награждени...

 

Firefox browser released in 2011 Mozilla Firefox 4Firefox 4.0 on Windows 7.Original author(s)Mozilla CorporationDeveloper(s)Mozilla CorporationMozilla FoundationInitial releaseMarch 22, 2011 (2011-03-22)[1]Final release4.0.1 / April 28, 2011; 12 years ago (2011-04-28) Repositoryhg.mozilla.org/mozilla-central/ Written inC++, JavaScript,[2] CSS,[3][4] XUL, XBLEngineGeckoOperating systemCross-platformSize11.9 MB – Windows 26...

Daewoo Damas Общие данные Производитель Daewoo Motors Годы производства 1991 — настоящее время Сборка до 1996: GM Korea1996-2013 UzDaewooAutoс 2014 ХорезмАвто GM Uzbekistan Класс Микровэн Дизайн и конструкция Компоновка задняя среднемоторная, заднеприводная Колёсная формула 4 × 2 Двигатель f8cb Общи...

 

Armenian Catholic ecclesiastical jurisdiction in Greece Ordinariate for Catholics of Armenian Rite in GreeceLocationCountryGreeceEcclesiastical provinceImmediately exempt to the Holy SeeStatisticsPopulation- Catholics(as of 2013)200Parishes2InformationDenominationCatholic ChurchSui iuris churchLatin ChurchRiteArmenian RiteEstablished21 December 1925Current leadershipPopeFrancisPatriarchKrikor Bedros XX GabroyanBishopSede vacanteCoadjutorHovsep Bezazian, Apostolic Administrator The Ordina...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for geographic features. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is like...

Prime Minister Robert Walpole proposed the bill at the height of his power. However opposition against it grew, and the proposal was eventually withdrawn. Proposed British legislation The Excise Bill of 1733 was a proposal by the British government of Robert Walpole to impose an excise tax on a variety of products. This would have allowed Customs officers to search private dwellings to look for contraband untaxed goods. The perceived violation of the Rights of Englishmen provoked widespread o...

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Sejarah Republik Rakyat Tiongkok (RRT) 1949–1976Era Mao Revolusi Proklamasi Perang Korea Reformasi Tanah Tiongkok Zhen Fan Kampanye Tiga-anti dan Lima-anti Kampanye Ratusan Bunga Kampanye Anti-Golongan Kanan Lompatan Jauh ke Depan(Bencana kelaparan besar Tiongkok) Revolusi Kebudayaan (Lin BiaoGeng EmpatInsiden Tianan...

 

Isoliquiritigenin Names Preferred IUPAC name 2′,4,4′-Trihydroxychalcone Other names 6'-Deoxychalcone4,2',4'-Trihydroxychalcone2',4',4-Trihydroxychalcone Identifiers CAS Number 961-29-5 Y 3D model (JSmol) Interactive image Abbreviations ILTG ChEBI CHEBI:310312 N ChEMBL ChEMBL129795 N ChemSpider 553829 N ECHA InfoCard 100.202.617 EC Number 237-316-5 KEGG C08650 N PubChem CID 638278 UNII B9CTI9GB8F Y CompTox Dashboard (EPA) DTXSID2022466 InChI InChI=1S/C15H12O4...

Status legalitas pelacuran di seluruh Asia.   Legalisasi – pelacuran adalah legal dan diatur dalam beberapa kasus   Abolisionisme – pelacuran adalah legal, tetapi aktivitas terorganisir seperti rumah bordil dan mucikari adalah ilegal   Prohibitionism – pelacuran adalah ilegal   Legalitas bervariasi dengan hukum setempat Pelacuran di Bangladesh merupakan hal yang legal dan diatur. Pelacur harus mendaftar dan menyatakan surat pernyataan yang menyata...

 

R ВодолеяДвойная звезда Графики недоступны из-за технических проблем. См. информацию на Фабрикаторе и на mediawiki.org. Наблюдательные данные(Эпоха J2000.0) Тип Симбиотическая звезда Прямое восхождение 23ч 43м 49,50с Склонение −15° 17′ 04″ Расстояние 643±246,4 св. года&...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!