The other isomer, 2-quinuclidone, appears equally uneventful, but in fact it has defied synthesis until 2006.[2][3][4] The reason is that this molecule is very unstable because its amide group has the aminelone pair and the carbonyl group not properly aligned, as may be expected for an amide, as a result of steric strain. This behaviour is predicted by Bredt's Rule, and formal amide group resembles in fact an amine, as evidenced by the ease of salt formation.
It is, nevertheless, possible to estimate its basicity in an experiment in which amine pairs (the quinuclidonium salt and a reference amine such as diethylamine or indoline) are introduced into a mass spectrometer. The relative basicity is then revealed by collision-induced dissociation of the heterodimer. Further analysis via the extended kinetic method allows for the determination of the proton affinity and gas phase basicity of 2-quinuclidonium. This method has determined that quinuclidone ranks among secondary and tertiary amines in terms of proton affinity.[6] This high basicity is hypothesized to be due to the loss of electron delocalization when the amide bond is twisted—this causes misalignment of the pi orbitals, resulting in loss of electron resonance.
References
^H. U. Daeniker, C. A. Grob (1964). "3-Quinuclidone Hydrochloride". Organic Syntheses. 44: 86. doi:10.15227/orgsyn.044.0086.
^Tani, Kousuke; Stoltz, Brian M. (2006). "Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate". Nature. 441 (7094): 731–734. Bibcode:2006Natur.441..731T. doi:10.1038/nature04842.
^Bethany Halford (June 12, 2006). "Amide With A Twist". Chemical and Engineering News. 84 (24).
^Clayden, Jonathan; Moran, Wesley J. (2006). "The Twisted Amide 2-Quinuclidone: 60 Years in the Making". Angewandte Chemie International Edition. 45 (43): 7118–7120. doi:10.1002/anie.200603016. ISSN1433-7851. PMID17009382.