Quaternionic projective space

In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by

and is a closed manifold of (real) dimension 4n. It is a homogeneous space for a Lie group action, in more than one way. The quaternionic projective line is homeomorphic to the 4-sphere.

In coordinates

Its direct construction is as a special case of the projective space over a division algebra. The homogeneous coordinates of a point can be written

where the are quaternions, not all zero. Two sets of coordinates represent the same point if they are 'proportional' by a left multiplication by a non-zero quaternion c; that is, we identify all the

.

In the language of group actions, is the orbit space of by the action of , the multiplicative group of non-zero quaternions. By first projecting onto the unit sphere inside one may also regard as the orbit space of by the action of , the group of unit quaternions.[1] The sphere then becomes a principal Sp(1)-bundle over :

This bundle is sometimes called a (generalized) Hopf fibration.

There is also a construction of by means of two-dimensional complex subspaces of , meaning that lies inside a complex Grassmannian.

Topology

Homotopy theory

The space , defined as the union of all finite 's under inclusion, is the classifying space BS3. The homotopy groups of are given by These groups are known to be very complex and in particular they are non-zero for infinitely many values of . However, we do have that

It follows that rationally, i.e. after localisation of a space, is an Eilenberg–Maclane space . That is (cf. the example K(Z,2)). See rational homotopy theory.

In general, has a cell structure with one cell in each dimension which is a multiple of 4, up to . Accordingly, its cohomology ring is , where is a 4-dimensional generator. This is analogous to complex projective space. It also follows from rational homotopy theory that has infinite homotopy groups only in dimensions 4 and .

Differential geometry

carries a natural Riemannian metric analogous to the Fubini-Study metric on , with respect to which it is a compact quaternion-Kähler symmetric space with positive curvature.

Quaternionic projective space can be represented as the coset space

where is the compact symplectic group.

Characteristic classes

Since , its tangent bundle is stably trivial. The tangent bundles of the rest have nontrivial Stiefel–Whitney and Pontryagin classes. The total classes are given by the following formulas:

where is the generator of and is its reduction mod 2.[2]

Special cases

Quaternionic projective line

The one-dimensional projective space over is called the "projective line" in generalization of the complex projective line. For example, it was used (implicitly) in 1947 by P. G. Gormley to extend the Möbius group to the quaternion context with linear fractional transformations. For the linear fractional transformations of an associative ring with 1, see projective line over a ring and the homography group GL(2,A).

From the topological point of view the quaternionic projective line is the 4-sphere, and in fact these are diffeomorphic manifolds. The fibration mentioned previously is from the 7-sphere, and is an example of a Hopf fibration.

Explicit expressions for coordinates for the 4-sphere can be found in the article on the Fubini–Study metric.

Quaternionic projective plane

The 8-dimensional has a circle action, by the group of complex scalars of absolute value 1 acting on the other side (so on the right, as the convention for the action of c above is on the left). Therefore, the quotient manifold

may be taken, writing U(1) for the circle group. It has been shown that this quotient is the 7-sphere, a result of Vladimir Arnold from 1996, later rediscovered by Edward Witten and Michael Atiyah.

References

  1. ^ Naber, Gregory L. (2011) [1997]. "Physical and Geometrical Motivation". Topology, Geometry and Gauge fields. Texts in Applied Mathematics. Vol. 25. Springer. p. 50. doi:10.1007/978-1-4419-7254-5_0. ISBN 978-1-4419-7254-5.
  2. ^ Szczarba, R.H. (1964). "On tangent bundles of fibre spaces and quotient spaces" (PDF). American Journal of Mathematics. 86 (4): 685–697. doi:10.2307/2373152. JSTOR 2373152.

Further reading

Read other articles:

AirportMinot International AirportIATA: MOTICAO: KMOTFAA LID: MOTSummaryAirport typePublicOwnerCity of MinotServesMinot, North Dakota, U.S.Elevation AMSL1,716 ft / 523 mCoordinates48°15′28″N 101°16′41″W / 48.25778°N 101.27806°W / 48.25778; -101.27806Websitemotairport.comMapMOTLocation in North DakotaShow map of North DakotaMOTLocation in the United StatesShow map of the United StatesRunways Direction Length Surface ft m 13/31 7,700 2,347 Conc...

 

Campbell-Bay-Nationalpark IUCN-Kategorie II – National Park Nikobaren-Spitzhörnchen nahe Campbell Bay Nikobaren-Spitzhörnchen nahe Campbell Bay Lage Nikobaren, Indien Fläche 426,23 km² WDPA-ID 62686 Geographische Lage 7° 7′ N, 93° 46′ O7.11277893.761944Koordinaten: 7° 6′ 46″ N, 93° 45′ 43″ O Campbell-Bay-Nationalpark (Andamanen und Nikobaren) Meereshöhe von 0 m bis 642 m Einrichtungsdatum 1992 Der Cam...

 

Гусейн Аріфазерб. Hüseyn Arif Народився 15 червня 1924(1924-06-15)Єнігюнd, Ґазахський повітdПомер 14 вересня 1992(1992-09-14) (68 років)Баку, АзербайджанПоховання Агстафинський районКраїна  СРСР АзербайджанДіяльність поетМова творів азербайджанськаРоки активності з 1942Нагороди ...

Ця стаття має кілька недоліків. Будь ласка, допоможіть удосконалити її або обговоріть ці проблеми на сторінці обговорення. Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без ...

 

Області Албанії Адміністративно територія Албанії ділиться на 12 областей (цярків, алб. qark (кярк, кяркьє), які у свою чергу діляться на 61 муніципалітетів (алб. rreth, множина rrethe, [reθ]/[реθ]). Муніципалітети діляться на 373 комуни (алб. komunë, множина komuna). Раніше області називалися пре

 

The Diary of Anne FrankPoster film karya Tom ChantrellSutradara George Stevens Produser George Stevens Ditulis oleh Frances Goodrich Albert Hackett BerdasarkanThe Diary ofAnne Frank karyaFrances GoodrichAlbert HackettThe Diary of aYoung Girl karyaAnne FrankPemeranMillie PerkinsJoseph SchildkrautRichard BeymerShelley WintersDiane BakerEd WynnPenata musikAlfred NewmanSinematograferWilliam C. MellorPenyuntingDavid BrethertonWilliam MaceRobert SwinkDistributorTwentieth Century FoxTanggal ri...

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (ديسمبر 2020) الدخول في الممنوع النوع دراما قصة عمرو عبد السميع إخراج م

 

Diagram kandang pesawat Hanggar atau kandang pesawat (bahasa Inggris: hangar) adalah sebuah struktur bangunan tertutup untuk menyimpan pesawat atau wahana antariksa. Hanggar terbuat dari metal, kayu, dan beton. Kata hangar berasal dari kata Prancis Pertengahan hanghart (penutupan di dekat rumah), yang berasal dari bahasa Jermanik, dari kata Franka *haimgard (penutupan rumah, bagian depan di sekitaran sekelompok rumah), dari *haim (rumah, desa, desa kecil) dan gard (lahan). Hanggar dipakai unt...

 

Rhett ReeseRhett Reese berbicara di San Diego Comic-Con International 2018Tempat tinggalLos Angeles, CaliforniaPekerjaanProduser film, penulis naskah, produser televisiTahun aktif1992–sekarangSuami/istriChelsey Crisp ​(m. 2016)​ Rhett Reese adalah seorang produser film, penulis naskah, dan produser televisi asal Amerika. Sebagai penulis naskah, ia bertugas dalam film-film Clifford's Really Big Movie, Cruel Intentions 3. Ia berkolaborasi dengan Paul Wernick,...

Hitzhusen Lambang kebesaranLetak Hitzhusen di Segeberg NegaraJermanNegara bagianSchleswig-HolsteinKreisSegeberg Municipal assoc.Bad Bramstedt-LandPemerintahan • MayorHorst-Günther HungerLuas • Total7,93 km2 (306 sq mi)Ketinggian24 m (79 ft)Populasi (2013-12-31)[1] • Total1.258 • Kepadatan1,6/km2 (4,1/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos24576Kode area telepon04192Pelat kendaraanSESitus webwww.am...

 

  هذه المقالة عن كأس العالم لكرة القدم 2002. لمعانٍ أخرى، طالع كأس العالم لكرة القدم 2002 (لعبة فيديو). كأس العالم لكرة القدم 20022002 FIFA 월드컵 한국/일본2002 FIFAワールドカップ 韓国/日الشعار الرسمي لكأس العالم لكرة القدم 2002تفاصيل المسابقةالبلد المضيف كوريا الجنوبية  اليابانالتواري...

 

SMP Swasta Budhi Dharma BaligeLogo SMP Swasta Budhi Dharma BaligeInformasiDidirikan1 September 1950AkreditasiA [1]Nomor Pokok Sekolah Nasional10208528MotoBudhi Dharma Jaya Selamanya (Mars Sekolah)Kepala SekolahFr. Norbertus Banusu, CMM, S.Pd.KurikulumKurikulum Tingkat Satuan Pendidikan dan Kurikulum 2013StatusSwastaAlamatLokasiJalan Pastor Sybarandus Van Rossum, Soposurung, Balige, Kabupaten Toba, Sumatera Utara, IndonesiaTel./Faks.(0632) 21534Situs webwww.smpbudhidharma.sch.idSurel...

Railway station in Indonesia C26 LW01 Cikarang StationStasiun CikarangThe renovated building of Cikarang station (2022)General informationLocationKarangasih, North Cikarang, Bekasi RegencyWest JavaIndonesiaCoordinates6°15′19″S 107°08′42″E / 6.255393°S 107.145129°E / -6.255393; 107.145129Elevation+18 m (59 ft)Owned byKereta Api IndonesiaOperated byKereta Api IndonesiaKAI CommuterLine(s)Rajawali–Cikampek railway Cikarang Loop LineLW Walahar/Jatilu...

 

Thomas HammarbergPhoto: Bengt Oberger トマス・ハマーベリ(Thomas Hammarberg、1942年1月2日 - )は、スウェーデンの外交官、人権活動家 (Human rights activist) 。エルンシェルツビクの生まれ。 2006年4月1日から2012年3月31日まで、初代委員のアルバロ・ヒル=ロブレス (Álvaro Gil-Robles) の後任として、ストラスブールの欧州評議会の第2代人権委員を務めた。後任はラトビア国籍...

 

Swedish actress This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article...

1978 live album by Don CherryLive AnkaraLive album by Don CherryReleased1978RecordedNovember 23, 1969VenueUS Embassy, Ankara, TurkeyGenreJazz, World musicLabelSonet RecordsSNTF 669ProducerKeith Knox Live Ankara (also known as Live in Ankara) is a live album by trumpeter Don Cherry. It was recorded in November 1969 at the US Embassy in Ankara, Turkey, and was released on LP in 1978 by Sonet Records. On the album, Cherry is joined by three Turkish musicians: saxophonist and percussion I...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2022) Se procura o romance gráfico, consulte Arkham Asylum: A Serious House on Serious Earth Batman: Arkham Asylum Batman: Arkham Asylum Produtora(s) Rocksteady Studios Editora(s) Eidos Interactive Warner Bros. Interactive Ent...

 

American actor, martial artist, and filmmaker (born 1952) This article is about the actor and martial artist. For the animator/professor, see Steve Segal. For the comic book writer, see Steven T. Seagle. Steven SeagalSeagal in 2016BornSteven Frederic Seagal (1952-04-10) April 10, 1952 (age 71)Lansing, Michigan, U.S.Citizenship American Serbian Russian Alma materFullerton CollegeOccupationsActorwriterproducermartial artistmusicianYears active1982–presentStyleAikidoHeight6 ...

Waterfall in Tasmania, Australia Russell FallsLower curtain of Russell FallsLocationCentral Highlands, Tasmania, AustraliaCoordinates42°40′12″S 146°42′36″E / 42.67000°S 146.71000°E / -42.67000; 146.71000[1]TypeTiered–cascadeElevation295 metres (968 ft)[2]Total height34–58 metres (112–190 ft)[2]Number of drops2WatercourseRussell Falls Creek The Russell Falls, a tiered–cascade waterfall on the Russell Falls Creek, is ...

 

American politician George Franklin BrummFrontispiece of 1935's George F. Brumm, Late a Representative from PennsylvaniaMember of the U.S. House of Representativesfrom Pennsylvania's 13th districtIn officeMarch 4, 1929 – May 29, 1934Preceded byCyrus M. PalmerSucceeded byJames H. GildeaIn officeMarch 4, 1923 – March 3, 1927Preceded byFred B. GernerdSucceeded byCyrus M. Palmer Personal detailsBorn(1878-01-24)January 24, 1878Minersville, PennsylvaniaDiedMay 29, ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!