Pontryagin class

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

Definition

Given a real vector bundle over , its -th Pontryagin class is defined as

where:

  • denotes the -th Chern class of the complexification of ,
  • is the -cohomology group of with integer coefficients.

The rational Pontryagin class is defined to be the image of in , the -cohomology group of with rational coefficients.

Properties

The total Pontryagin class

is (modulo 2-torsion) multiplicative with respect to Whitney sum of vector bundles, i.e.,

for two vector bundles and over . In terms of the individual Pontryagin classes ,

and so on.

The vanishing of the Pontryagin classes and Stiefel–Whitney classes of a vector bundle does not guarantee that the vector bundle is trivial. For example, up to vector bundle isomorphism, there is a unique nontrivial rank 10 vector bundle over the 9-sphere. (The clutching function for arises from the homotopy group .) The Pontryagin classes and Stiefel-Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel–Whitney class of vanishes by the Wu formula . Moreover, this vector bundle is stably nontrivial, i.e. the Whitney sum of with any trivial bundle remains nontrivial. (Hatcher 2009, p. 76)

Given a -dimensional vector bundle we have

where denotes the Euler class of , and denotes the cup product of cohomology classes.

Pontryagin classes and curvature

As was shown by Shiing-Shen Chern and André Weil around 1948, the rational Pontryagin classes

can be presented as differential forms which depend polynomially on the curvature form of a vector bundle. This Chern–Weil theory revealed a major connection between algebraic topology and global differential geometry.

For a vector bundle over a -dimensional differentiable manifold equipped with a connection, the total Pontryagin class is expressed as

where denotes the curvature form, and denotes the de Rham cohomology groups.[citation needed]

Pontryagin classes of a manifold

The Pontryagin classes of a smooth manifold are defined to be the Pontryagin classes of its tangent bundle.

Novikov proved in 1966 that if two compact, oriented, smooth manifolds are homeomorphic then their rational Pontryagin classes in are the same. If the dimension is at least five, there are at most finitely many different smooth manifolds with given homotopy type and Pontryagin classes.[1]

Pontryagin classes from Chern classes

The Pontryagin classes of a complex vector bundle is completely determined by its Chern classes. This follows from the fact that , the Whitney sum formula, and properties of Chern classes of its complex conjugate bundle. That is, and . Then, this given the relation

[2]

for example, we can apply this formula to find the Pontryagin classes of a complex vector bundle on a curve and a surface. For a curve, we have

so all of the Pontryagin classes of complex vector bundles are trivial. On a surface, we have

showing . On line bundles this simplifies further since by dimension reasons.

Pontryagin classes on a Quartic K3 Surface

Recall that a quartic polynomial whose vanishing locus in is a smooth subvariety is a K3 surface. If we use the normal sequence

we can find

showing and . Since corresponds to four points, due to Bézout's lemma, we have the second chern number as . Since in this case, we have

. This number can be used to compute the third stable homotopy group of spheres.[3]

Pontryagin numbers

Pontryagin numbers are certain topological invariants of a smooth manifold. Each Pontryagin number of a manifold vanishes if the dimension of is not divisible by 4. It is defined in terms of the Pontryagin classes of the manifold as follows:

Given a smooth -dimensional manifold and a collection of natural numbers

such that ,

the Pontryagin number is defined by

where denotes the -th Pontryagin class and the fundamental class of .

Properties

  1. Pontryagin numbers are oriented cobordism invariant; and together with Stiefel-Whitney numbers they determine an oriented manifold's oriented cobordism class.
  2. Pontryagin numbers of closed Riemannian manifolds (as well as Pontryagin classes) can be calculated as integrals of certain polynomials from the curvature tensor of a Riemannian manifold.
  3. Invariants such as signature and -genus can be expressed through Pontryagin numbers. For the theorem describing the linear combination of Pontryagin numbers giving the signature see Hirzebruch signature theorem.

Generalizations

There is also a quaternionic Pontryagin class, for vector bundles with quaternion structure.

See also

References

  1. ^ Novikov, S. P. (1964). "Homotopically equivalent smooth manifolds. I". Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya. 28: 365–474. MR 0162246.
  2. ^ Mclean, Mark. "Pontryagin Classes" (PDF). Archived (PDF) from the original on 2016-11-08.[self-published source?]
  3. ^ "A Survey of Computations of Homotopy Groups of Spheres and Cobordisms" (PDF). p. 16. Archived (PDF) from the original on 2016-01-22.[self-published source?]

Read other articles:

Patrimonio del mercurio Patrimonio de la Humanidad de la Unesco Interior de la mina principal de Almadén.LocalizaciónPaís España EspañaEslovenia EsloveniaDatos generalesTipo CulturalCriterios ii, ivIdentificación 1313revRegión Europa y América del NorteInscripción 2012 (XXXVI sesión)[editar datos en Wikidata] Patrimonio del mercurio: Almadén e Idrija es un sitio inscrito en el Patrimonio Mundial de la Unesco que se encuentra situado conjuntamente en las localida...

 

Rasyid Qurnuen AquaryKomandan Jenderal Komando Pasukan Khusus ke-21Masa jabatan1 September 2006 – 12 September 2007PendahuluMayjen TNI Syaiful RizalPenggantiMayjen TNI Soenarko Informasi pribadiLahir(1953-01-13)13 Januari 1953Bandung, Jawa Barat, IndonesiaMeninggal4 September 2017(2017-09-04) (umur 64)Jakarta, IndonesiaAlma materAkabri bagian Darat (1975)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1976 – 2010Pangkat Letnan Jenderal TNI...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

دلاغه  - منطقة سكنية -  تقسيم إداري البلد الأردن  المحافظة محافظة معان لواء لواء البتراء قضاء قضاء البتراء السكان التعداد السكاني 1370 نسمة (إحصاء 2015)   • الذكور 670   • الإناث 700   • عدد الأسر 279 معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   دلاغه منط

 

LorangDesaGapura selamat datang di Desa LorangNegara IndonesiaProvinsiMalukuKabupatenKepulauan AruKecamatanAru TengahKode Kemendagri81.07.03.2006Luas80 km² [1]Jumlah penduduk233 jiwa (data 2016) [1]Kepadatan3 jiwa/km² [1] SD Kristen Lorang Gereja Kristen Bethania di Desa Lorang Lorang atau Loran adalah salah satu desa yang terdapat di Kecamatan Aru Tengah, Kabupaten Kepulauan Aru, Provinsi Maluku, Indonesia.[2][3] Desa Lorang terletak di pesisir ...

 

«Стародавній жах» Творець: Леон БакстЧас створення: 1908Розміри: 250 × 270 смМатеріал: олія на полотніЗберігається: Санкт-Петербург, РосіяМузей: Російський музей Стародавній жах (Бакст) (рос. Древний ужас) — картина на сюжет з історії Стародавньої Греції, котру створив худ

منطقة وصاية كبومن Kabupaten Kebumen منطقة وصاية Other انتساخ(ج) Karang Bolong Beach, Kebumen شعار منطقة وصاية كبومنشعار اللقب Kota Kebumen الشعار: Kebumen Beriman (Bersih, Indah, Manfaat, Aman, Nyaman) (Clean, Lovely, Useful, Safe, Comfortable) الاسم الرسمي منطقة وصاية كبومن   الإحداثيات 7°37′46″S 109°34′14″E / 7.62944°S 109.57056°E / -7.62944; 10...

 

Karl Jaspers Karl Jaspers (1946) Algemene informatie Land Duitsland, Zwitserland Naam bij geboorte Karl Theodor Jaspers Geboortedatum 23 februari 1883 Geboorteplaats Oldenburg Overlijdensdatum 26 februari 1969 Overlijdensplaats Basel Begraafplaats Friedhof am Hörnli Werk Beroep filosoof, psychiater, arts, theoloog, academisch docent, schrijver, psycholoog Werkveld filosofie Werkplaats Heidelberg Bekende werken Axiale periode Leerlingen Hannah Arendt, Hermine S...

 

Deniz Yücel (2018) Deniz Yücel [deˈniz jyˈd͡ʒæl] (* 10. September 1973 in Flörsheim am Main) ist ein deutsch-türkischer Journalist und Publizist. Er war von 2007 bis 2015 Redakteur der taz und ist seit 2015 Korrespondent und Autor der WeltN24-Gruppe des Axel Springer Verlags.[1] Zudem ist er langjähriger Mitherausgeber der Wochenzeitung Jungle World.[2] Von 2021 bis zu seinem Rücktritt 2022 war er Präsident des PEN-Zentrums Deutschland[3] und ist seit Juni ...

Raffaele RossiO.C.D.Pelayan AllahSekretaris Kongregasi Konsistorial SuciGerejaGereja Katolik RomaPenunjukan4 Juli 1930Masa jabatan berakhir17 September 1948PendahuluCarlo PerosiPenerusAdeodato Giovanni PiazzaImamatTahbisan imam21 December 1901oleh Ferdinando dei Conti CapponiTahbisan uskup25 Mei 1920oleh Gaetano de LaiPelantikan kardinal30 Juni 1930oleh Paus Pius XIPeringkatCardinal-PriestInformasi pribadiNama lahirCarlo RossiLahir(1876-10-28)28 Oktober 1876Pisa, Kerajaan ItaliaMeni...

 

Upazila in Chattogram Division, Bangladesh This article is about the Upazila. For town, see Sitakunda. Upazila in Chittagong, BangladeshSitakunda সীতাকুণ্ডUpazilaView from Chandranath HillCoordinates: 22°37′N 91°39.7′E / 22.617°N 91.6617°E / 22.617; 91.6617Country BangladeshDivisionChittagongDistrictChittagongHeadquartersSitakundaArea • Total483.97 km2 (186.86 sq mi)Population (2011) • Total387,...

 

  提示:此条目的主题不是津輕鐵道線。 津輕線701系列車與普通列車(蟹田站)日語原名津軽線假名つがるせん羅馬字Tsugaru sen概覽營運地點 日本青森縣起點站青森站終點站三廄站技術數據路線長度55.8公里最高速度100公里/小時正線數目全線單線車站數目18個軌距1,067毫米(窄軌)電氣化方式交流電20,000 V、50 Hz高架電車線(青森-新中小國信號場)閉塞方式單線自...

Filipino judge (born 1940) In this Spanish name, the first or paternal surname is Puno and the second or maternal family name is Serrano. The HonorableReynato S. PunoKGCROfficial portrait22nd Chief Justice of the PhilippinesIn officeDecember 8, 2006 – May 17, 2010Appointed byGloria Macapagal ArroyoPreceded byArtemio PanganibanSucceeded byRenato Corona29th Senior Associate Justice of the Supreme Court of the PhilippinesIn officeNovember 13, 2003 – December 7, 2006...

 

2005 studio album by NiveaComplicatedStudio album by NiveaReleasedMay 3, 2005 (2005-05-03)GenreR&B[1]Length53:13LabelJiveProducer Karl Antoine Larry Rock Campbell Bryan-Michael Cox Deputy The-Dream Jermaine Dupri R. Kelly Nastacia Nazz Kendall Lil Jon P.I.M.P. The Platinum Brothers Nivea chronology Nivea(2001) Complicated(2005) Animalistic(2006) Singles from Complicated OkayReleased: October 19, 2004 Parking LotReleased: May 3, 2005 Complicated is the second...

 

Koh RongNama lokal: កោះរុងKoh RongKoh Rong (Cambodia)GeografiLokasiKamboja - Asia TenggaraKoordinat10°42′N 103°14′E / 10.700°N 103.233°E / 10.700; 103.233Luas78 km2Panjang15 kmLebar3–9 km (1,9–5,6 mi)PemerintahanNegaraKambojaProvinsiKoh KongDistrictBotum SakorKependudukanPenduduk1,100 estimatedKelompok etnikKhmer Koh Rong (Khmer: កោះរុង), adalah pulau terbesar kedua di Kamboja. Berlawanan dengan kepercayaan Barat,...

Roller Derby GermanyFounded2011ColorsBlack, red and gold      Championships9th place at 2011 Roller Derby World CupBroadcastersDerby News NetworkWebsiterollerderbygermany.de Roller Derby Germany represents Germany in women's international roller derby, in events such as the Roller Derby World Cup. The team was first formed to compete at the 2011 Roller Derby World Cup and finished the tournament in ninth place.[1] At the World Cup, Germany lost in round one to Team New ...

 

Mass shooting in Monterey Park, California 2023 Monterey Park shootingPart of mass shootings in the United States Los Angeles County, California [Interactive fullscreen map + nearby articles] Encounters with perpetrator Central area of Los Angeles CountyLocationMonterey Park, California, U.S.Coordinates34°03′43″N 118°07′25″W / 34.06194°N 118.12361°W / 34.06194; -118.12361DateJanuary 21, 2023; 10 months ago (January 21, 2023) c. 10:22 p.m.[1...

 

2010 Canadian film7 DaysOfficial teaser posterDirected byDaniel GrouWritten byPatrick SenécalProduced byNicole RobertStarringRémy Girard Claude Legault Fanny MalletteCinematographyBernard CoutureEdited byValérie HérouxProductioncompanyGo FilmsDistributed byAlliance Vivafilm Seville PicturesRelease date January 22, 2010 (2010-01-22) [1]Running time111 minutesCountryCanadaLanguageFrench 7 Days (French: Les 7 jours du talion, The 7 Days of Retaliation) is a 2010 Canadi...

Sri pagi merah Ipomoea coccinea TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladasteridsKladlamiidsOrdoSolanalesFamiliConvolvulaceaeTribusIpomoeeaeGenusIpomoeaSpesiesIpomoea coccinea Linnaeus, 1753 lbs Ipomoea coccinea adalah tanaman berbunga dalam keluarga Convolvulaceae yang dikenal dengan beberapa nama umum termasuk sripagi merah, dan sripagi api. Keterangan Kemuliaan pagi merah tumbuh dengan cepat, memutar tanaman meramb...

 

Type of chant Responsories redirects here. For the composition by Max Reger, see Responsories (Reger). A responsory or respond is a type of chant in western Christian liturgies. Definition The most general definition of a responsory is any psalm, canticle, or other sacred musical work sung responsorially, that is, with a cantor or small group singing verses while the whole choir or congregation respond with a refrain. However, this article focuses on those chants of the western Christian trad...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!