Quasispecies model

The quasispecies model is a description of the process of the Darwinian evolution of certain self-replicating entities within the framework of physical chemistry. A quasispecies is a large group or "cloud" of related genotypes that exist in an environment of high mutation rate (at stationary state[1]), where a large fraction of offspring are expected to contain one or more mutations relative to the parent. This is in contrast to a species, which from an evolutionary perspective is a more-or-less stable single genotype, most of the offspring of which will be genetically accurate copies.[2]

It is useful mainly in providing a qualitative understanding of the evolutionary processes of self-replicating macromolecules such as RNA or DNA or simple asexual organisms such as bacteria or viruses (see also viral quasispecies), and is helpful in explaining something of the early stages of the origin of life. Quantitative predictions based on this model are difficult because the parameters that serve as its input are impossible to obtain from actual biological systems. The quasispecies model was put forward by Manfred Eigen and Peter Schuster[3] based on initial work done by Eigen.[4]

Simplified explanation

When evolutionary biologists describe competition between species, they generally assume that each species is a single genotype whose descendants are mostly accurate copies. (Such genotypes are said to have a high reproductive fidelity.) In evolutionary terms, we are interested in the behavior and fitness of that one species or genotype over time.[5]

Some organisms or genotypes, however, may exist in circumstances of low fidelity, where most descendants contain one or more mutations. A group of such genotypes is constantly changing, so discussions of which single genotype is the most fit become meaningless. Importantly, if many closely related genotypes are only one mutation away from each other, then genotypes in the group can mutate back and forth into each other. For example, with one mutation per generation, a child of the sequence AGGT could be AGTT, and a grandchild could be AGGT again. Thus we can envision a "cloud" of related genotypes that is rapidly mutating, with sequences going back and forth among different points in the cloud. Though the proper definition is mathematical, that cloud, roughly speaking, is a quasispecies.[citation needed][6]

Quasispecies behavior exists for large numbers of individuals existing at a certain (high) range of mutation rates.[7]

Quasispecies, fitness, and evolutionary selection

In a species, though reproduction may be mostly accurate, periodic mutations will give rise to one or more competing genotypes. If a mutation results in greater replication and survival, the mutant genotype may out-compete the parent genotype and come to dominate the species. Thus, the individual genotypes (or species) may be seen as the units on which selection acts and biologists will often speak of a single genotype's fitness.[8]

In a quasispecies, however, mutations are ubiquitous and so the fitness of an individual genotype becomes meaningless: if one particular mutation generates a boost in reproductive success, it can't amount to much because that genotype's offspring are unlikely to be accurate copies with the same properties. Instead, what matters is the connectedness of the cloud. For example, the sequence AGGT has 12 (3+3+3+3) possible single point mutants AGGA, AGGG, and so on. If 10 of those mutants are viable genotypes that may reproduce (and some of whose offspring or grandchildren may mutate back into AGGT again), we would consider that sequence a well-connected node in the cloud. If instead only two of those mutants are viable, the rest being lethal mutations, then that sequence is poorly connected and most of its descendants will not reproduce. The analog of fitness for a quasispecies is the tendency of nearby relatives within the cloud to be well-connected, meaning that more of the mutant descendants will be viable and give rise to further descendants within the cloud.[9]

When the fitness of a single genotype becomes meaningless because of the high rate of mutations, the cloud as a whole or quasispecies becomes the natural unit of selection.

Application to biological research

Quasispecies represents the evolution of high-mutation-rate viruses such as HIV and sometimes single genes or molecules within the genomes of other organisms.[10][11][12] Quasispecies models have also been proposed by Jose Fontanari and Emmanuel David Tannenbaum to model the evolution of sexual reproduction.[13] Quasispecies was also shown in compositional replicators (based on the Gard model for abiogenesis)[14] and was also suggested to be applicable to describe cell's replication, which amongst other things requires the maintenance and evolution of the internal composition of the parent and bud.

Formal background

The model rests on four assumptions:[15]

  1. The self-replicating entities can be represented as sequences composed of a small number of building blocks—for example, sequences of RNA consisting of the four bases adenine, guanine, cytosine, and uracil.
  2. New sequences enter the system solely as the result of a copy process, either correct or erroneous, of other sequences that are already present.
  3. The substrates, or raw materials, necessary for ongoing replication are always present in sufficient quantity. Excess sequences are washed away in an outgoing flux.
  4. Sequences may decay into their building blocks. The probability of decay does not depend on the sequences' age; old sequences are just as likely to decay as young sequences.

In the quasispecies model, mutations occur through errors made in the process of copying already existing sequences. Further, selection arises because different types of sequences tend to replicate at different rates, which leads to the suppression of sequences that replicate more slowly in favor of sequences that replicate faster. However, the quasispecies model does not predict the ultimate extinction of all but the fastest replicating sequence. Although the sequences that replicate more slowly cannot sustain their abundance level by themselves, they are constantly replenished as sequences that replicate faster mutate into them. At equilibrium, removal of slowly replicating sequences due to decay or outflow is balanced by replenishing, so that even relatively slowly replicating sequences can remain present in finite abundance.[16]

Due to the ongoing production of mutant sequences, selection does not act on single sequences, but on mutational "clouds" of closely related sequences, referred to as quasispecies. In other words, the evolutionary success of a particular sequence depends not only on its own replication rate, but also on the replication rates of the mutant sequences it produces, and on the replication rates of the sequences of which it is a mutant. As a consequence, the sequence that replicates fastest may even disappear completely in selection-mutation equilibrium, in favor of more slowly replicating sequences that are part of a quasispecies with a higher average growth rate.[17] Mutational clouds as predicted by the quasispecies model have been observed in RNA viruses and in in vitro RNA replication.[18][19]

The mutation rate and the general fitness of the molecular sequences and their neighbors is crucial to the formation of a quasispecies. If the mutation rate is zero, there is no exchange by mutation, and each sequence is its own species. If the mutation rate is too high, exceeding what is known as the error threshold, the quasispecies will break down and be dispersed over the entire range of available sequences.[20]

Mathematical description

A simple mathematical model for a quasispecies is as follows:[21] let there be possible sequences and let there be organisms with sequence i. Let's say that each of these organisms asexually gives rise to offspring. Some are duplicates of their parent, having sequence i, but some are mutant and have some other sequence. Let the mutation rate correspond to the probability that a j type parent will produce an i type organism. Then the expected fraction of offspring generated by j type organisms that would be i type organisms is ,

where .

Then the total number of i-type organisms after the first round of reproduction, given as , is

Sometimes a death rate term is included so that:

where is equal to 1 when i=j and is zero otherwise. Note that the n-th generation can be found by just taking the n-th power of W substituting it in place of W in the above formula.

This is just a system of linear equations. The usual way to solve such a system is to first diagonalize the W matrix. Its diagonal entries will be eigenvalues corresponding to certain linear combinations of certain subsets of sequences which will be eigenvectors of the W matrix. These subsets of sequences are the quasispecies. Assuming that the matrix W is a primitive matrix (irreducible and aperiodic), then after very many generations only the eigenvector with the largest eigenvalue will prevail, and it is this quasispecies that will eventually dominate. The components of this eigenvector give the relative abundance of each sequence at equilibrium.[22]

Note about primitive matrices

W being primitive means that for some integer , that the power of W is > 0, i.e. all the entries are positive. If W is primitive then each type can, through a sequence of mutations (i.e. powers of W) mutate into all the other types after some number of generations. W is not primitive if it is periodic, where the population can perpetually cycle through different disjoint sets of compositions, or if it is reducible, where the dominant species (or quasispecies) that develops can depend on the initial population, as is the case in the simple example given below.[citation needed]

Alternative formulations

The quasispecies formulae may be expressed as a set of linear differential equations. If we consider the difference between the new state and the old state to be the state change over one moment of time, then we can state that the time derivative of is given by this difference, we can write:

The quasispecies equations are usually expressed in terms of concentrations where

.
.

The above equations for the quasispecies then become for the discrete version:

or, for the continuum version:

Simple example

The quasispecies concept can be illustrated by a simple system consisting of 4 sequences. Sequences [0,0], [0,1], [1,0], and [1,1] are numbered 1, 2, 3, and 4, respectively. Let's say the [0,0] sequence never mutates and always produces a single offspring. Let's say the other 3 sequences all produce, on average, replicas of themselves, and of each of the other two types, where . The W matrix is then:

.

The diagonalized matrix is:

.

And the eigenvectors corresponding to these eigenvalues are:

Eigenvalue Eigenvector
1-2k [0,-1,0,1]
1-2k [0,-1,1,0]
1 [1,0,0,0]
1+k [0,1,1,1]

Only the eigenvalue is more than unity. For the n-th generation, the corresponding eigenvalue will be and so will increase without bound as time goes by. This eigenvalue corresponds to the eigenvector [0,1,1,1], which represents the quasispecies consisting of sequences 2, 3, and 4, which will be present in equal numbers after a very long time. Since all population numbers must be positive, the first two quasispecies are not legitimate. The third quasispecies consists of only the non-mutating sequence 1. It's seen that even though sequence 1 is the most fit in the sense that it reproduces more of itself than any other sequence, the quasispecies consisting of the other three sequences will eventually dominate (assuming that the initial population was not homogeneous of the sequence 1 type).[citation needed]

References

  1. ^ Eigen M, McCaskill J, Schuster P (1989). Molecular quasi-species. Vol. 92. John Wiley & Sons, Inc. pp. 6881–6891. doi:10.1021/j100335a010. hdl:11858/00-001M-0000-002C-84A7-C. ISBN 9780471622192. {{cite book}}: |journal= ignored (help)
  2. ^ Biebricher, C.K, Eigen, M. (2006). "What is a Quasispecies". In Esteban Domingo (ed.). Quasispecies: Concept and Implications for Virology. Springer. p. 1. ISBN 978-3-540-26395-1.
  3. ^ Eigen M, Schuster P (1979). The Hypercycle: A Principle of Natural Self-Organization. Berlin: Springer-Verlag. ISBN 978-0-387-09293-5.
  4. ^ Eigen M (October 1971). "Selforganization of matter and the evolution of biological macromolecules". Die Naturwissenschaften. 58 (10): 465–523. Bibcode:1971NW.....58..465E. doi:10.1007/BF00623322. PMID 4942363. S2CID 38296619.
  5. ^ Charlesworth B, Charlesworth D (November 2009). "Darwin and genetics". Genetics. 183 (3): 757–66. doi:10.1534/genetics.109.109991. PMC 2778973. PMID 19933231.
  6. ^ Eigen M (2013). From Strange Simplicity to Complex Familiarity. Oxford University Press. pp. 404–406. ISBN 978-0-19-857021-9.
  7. ^ Martinez, MA, Martus G, Capel E, Parera M, Franco S, Nevot M (2012) Quasispecies Dynamics of RNA Viruses. In: Viruses: Essential Agents of Life, Springer, Dordrecht, pp. 21-42.
  8. ^ "Evolution and the tree of life | Biology | Science". Khan Academy. Retrieved 2019-02-20.
  9. ^ Heylighen F (2023). "Complexity and Evolution" (PDF). Entropy. 25 (2): 286. Bibcode:2023Entrp..25..286V. doi:10.3390/e25020286. PMC 9955364. PMID 36832653. Lecture notes 2014-2015
  10. ^ Holland JJ, De La Torre JC, Steinhauer DA (1992). "RNA Virus Populations as Quasispecies". Genetic Diversity of RNA Viruses. Current Topics in Microbiology and Immunology. Vol. 176. pp. 1–20. doi:10.1007/978-3-642-77011-1_1. ISBN 978-3-642-77013-5. PMID 1600747. S2CID 46530529.
  11. ^ Shuman LJ, Wolfe H, Whetsell GW, Huber GA (September 1976). "Reimbursement alternatives for home health care". Inquiry: A Journal of Medical Care Organization, Provision and Financing. 13 (3): 277–87. PMID 135734.
  12. ^ Wilke CO (August 2005). "Quasispecies theory in the context of population genetics". BMC Evolutionary Biology. 5 (1): 44. Bibcode:2005BMCEE...5...44W. doi:10.1186/1471-2148-5-44. PMC 1208876. PMID 16107214.
  13. ^ Tannenbaum E, Fontanari JF (March 2008). "A quasispecies approach to the evolution of sexual replication in unicellular organisms". Theory in Biosciences. 127 (1): 53–65. doi:10.1007/s12064-008-0023-2. PMID 18286313. S2CID 8741998.
  14. ^ Gross R, Fouxon I, Lancet D, Markovitch O (December 2014). "Quasispecies in population of compositional assemblies". BMC Evolutionary Biology. 14 (1): 265. Bibcode:2014BMCEE..14..265G. doi:10.1186/s12862-014-0265-1. PMC 4357159. PMID 25547629.
  15. ^ Bull JJ, Meyers LA, Lachmann M (November 2005). "Quasispecies made simple". PLOS Computational Biology. 1 (6): e61. Bibcode:2005PLSCB...1...61B. doi:10.1371/journal.pcbi.0010061. PMC 1289388. PMID 16322763.
  16. ^ Systems Biology: A Textbook. By Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald.
  17. ^ Schuster P, Swetina J (November 1988). "Stationary mutant distributions and evolutionary optimization". Bulletin of Mathematical Biology. 50 (6): 635–60. doi:10.1007/BF02460094. PMID 3219448. S2CID 189885782.
  18. ^ Domingo E, Holland JJ (October 1997). "RNA virus mutations and fitness for survival". Annual Review of Microbiology. 51: 151–78. doi:10.1146/annurev.micro.51.1.151. PMID 9343347.
  19. ^ Burch CL, Chao L (August 2000). "Evolvability of an RNA virus is determined by its mutational neighbourhood". Nature. 406 (6796): 625–8. Bibcode:2000Natur.406..625B. doi:10.1038/35020564. PMID 10949302. S2CID 1894386.
  20. ^ Manrubia SC, Domingo E, Lázaro E (June 2010). "Pathways to extinction: beyond the error threshold". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1548): 1943–52. doi:10.1098/rstb.2010.0076. PMC 2880120. PMID 20478889.
  21. ^ Eigen M, McCaskill J, Schuster P (1989). Molecular quasi-species. Vol. 92. John Wiley & Sons, Inc. pp. 6881–6891. doi:10.1021/j100335a010. hdl:11858/00-001M-0000-002C-84A7-C. ISBN 9780471622192. {{cite book}}: |journal= ignored (help)
  22. ^ S Tseng Z (2008). Phase Portraits of Linear Systems.

Further reading

Read other articles:

برينت   الإحداثيات 32°56′25″N 87°10′30″W / 32.94024°N 87.174982°W / 32.94024; -87.174982  تاريخ التأسيس 1898  تقسيم إداري  البلد الولايات المتحدة[1]  التقسيم الأعلى مقاطعة بيب  خصائص جغرافية  المساحة 22.817339 كيلومتر مربع22.817342 كيلومتر مربع (1 أبريل 2010)[2]  ارتفاع 73 م

 

Ini adalah nama Papua (Mee), marganya adalah Dumupa Yakobus DumupaDumupa menjabat sebagai Bupati Dogiyai periode 2017–2022.Bupati Dogiyai Ke-2PetahanaMulai menjabat 18 Desember 2017PresidenJoko WidodoGubernurLukas EnembeWakilOskar MakaiPendahuluThomas TigiAnggota MRPMasa jabatan2011–2016 Informasi pribadiLahirYakobus Dumupa(1982-05-12)12 Mei 1982Apowo, Irian JayaKewarganegaraanIndonesiaKebangsaanIndonesiaSuami/istriMartina D. RunakiAnakAwitune DumupaRuth DumupaOrang tuaAmatus Dumu...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) تاديوز رومر (بالبولندية: Tadeusz Romer)‏    معلومات شخصية الميلاد 6 ديسمبر 1894  كاوناس  الوفاة 23 مارس 1978 (83 سنة)   مونتريال  مواطنة بولندا  الحياة ال...

Гірняк Йосип Йосипович Народився 14 квітня 1895(1895-04-14)м-ко Струсів, нині село, Теребовлянський районПомер 17 січня 1989(1989-01-17) (93 роки)Нью-ЙоркПоховання Український цвинтар святої Марії (Фокс Чейз)Громадянство  Австро-Угорщина СРСР СШАДіяльність драматург, актор, те

 

Parc Micaud Parc Micaud, au bord du Doubs Géographie Pays France Subdivision administrative Bourgogne-Franche-Comté Commune Besançon Quartier Les Chaprais Altitude 245 m Superficie 3 ha Cours d'eau Doubs Histoire Création 1843 Personnalité(s) Jean-Agathe MicaudAlphonse Delacroix Caractéristiques Type Jardin public Essences arbores et fleurs Gestion Propriétaire Municipalité Ouverture au public Oui Accès et transport Tramway  TRAM T1  T2  Localisa...

 

San FranciscoСингл Скотт МаккензіВипущений 13 травня 1967Жанр попМова англійськаЛейбл Columbia RecordsПродюсер Лу Адлерd «San Francisco (Be Sure to Wear Flowers in Your Hair)» — пісня з репертуару Скотта Маккензі, написана лідером групи The Mamas & the Papas Джоном Філіпсом. Пісня написана і видана в 1967 році для пі

Aditya SealLahir22 Maret 1988 (umur 35)Mumbai, Maharashtra, IndiaKebangsaanIndianPekerjaanaktorTahun aktif2000–sekarangOrang tuaManju Seal (Ibu) Manju Seal (ibu)KeluargaKonica Seal Shrivastav (Saudara perempuan) Rohit Shrivastava (Saudara ipar) Aditya Seal (lahir 22 Maret 1988) adalah model, aktor film dan seniman bela diri India.[1] Seal memulai debutnya dengan film Ek Chhotisi Love Story, di mana dia bermain sebagai remaja berlawanan Manisha Koirala.[2] Seal adal...

 

Tabletop war game This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Necromunda – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and wh...

 

Gracefield Arts CentreLocation within ScotlandLocation28 Edinburgh Rd, Dumfries DG1 1JQ, United KingdomWebsitehttps://www.visitscotland.com/info/see-do/gracefield-arts-centre-p249481 Gracefield Arts Centre is located in Dumfries. The gallery's main building, a Category B listed building, was bought in 1951 by a committee of local people who raised the money needed for the purchase and to do the alterations necessary to change the former house, which was known as ‘Gracefield’ into an art g...

Historic house in Indiana, United States United States historic placeGump HouseU.S. National Register of Historic Places Gump House, January 2013Show map of IndianaShow map of the United StatesLocationState Road 8, northwest of Garrett, Keyser Township, DeKalb County, IndianaCoordinates41°21′58″N 85°11′23″W / 41.36611°N 85.18972°W / 41.36611; -85.18972Arealess than one acreBuiltc. 1854 (1854)Architectural styleGreek RevivalMPSKeyser Township MRANR...

 

Village in Świętokrzyskie Voivodeship, PolandSieradziceVillageSieradziceCoordinates: 50°13′N 20°24′E / 50.217°N 20.400°E / 50.217; 20.400Country PolandVoivodeshipŚwiętokrzyskieCountyKazimierzaGminaKazimierza Wielka Sieradzice [ɕɛraˈd͡ʑit͡sɛ] is a village in the administrative district of Gmina Kazimierza Wielka, within Kazimierza County, Świętokrzyskie Voivodeship, in south-central Poland. It lies approximately 9 kilometres (6 mi) south-w...

 

Capital and most populous prefecture of Japan This article is about the Japanese prefecture. For other uses, see Tokyo (disambiguation). Metropolis in Kantō, JapanTokyo 東京都MetropolisTokyo MetropolisClockwise from top:Nishi-Shinjuku and Mount FujiTokyo TowerNational Diet BuildingTokyo StationTokyo Imperial PalaceShibuya CrossingTokyo Skytreeand Rainbow Bridge FlagSealEmblemAnthem: Tokyo Metropolitan Song (東京都歌, Tōkyō-to Ka)Interactive map outlining TokyoLocation within JapanCo...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Canadian federal election results in Calgary – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Electoral historyYearResults2019 2015 2011 2008 2006 2004 2000 1997 1993 1988 1984 1980 1979 1974 197...

 

Zamora Wappen der Provinz ZamoraWappen Flagge der Provinz ZamoraFlagge Basisdaten Staat: Spanien Spanien Autonome Gemeinschaft: Kastilienleon Kastilien und León Hauptstadt: Zamora (Spanien) Amtssprache: Spanisch Fläche: 10.561,29 km² Einwohner: 167.070 (1. Jan. 2022)[1] Bevölkerungsdichte: 16 Einw./km² Comarcas: 12 Gerichtsbezirke: 5 Gemeinden: 248 ISO-3166-2-Code: ES-ZA Website: diputaciondezamora.es Lage der Provinz Zamora Karte Die Provinz Zamora ist eine spanis...

 

Elections in Oregon Federal government Presidential elections 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 Presidential primaries Democratic 2000 2004 2008 2016 2020 2024 Republican 2008 2012 2016 2020 2024 U.S. Senate elections 1859 1860 sp 1862 sp 1864 1870 1872 1882 1885 1885 sp 1888 1890 1895 1898 1898 sp 1901 1903 1907 1907 s...

Branch railway line in Otago, New Zealand Otago Central RailwayDE class locomotive 504 on the Otago Central RailwayOverviewStatusOpen to Middlemarch, passenger, closed beyond MiddlemarchOwnerKiwiRail (first 4km)Dunedin RailwaysLocaleOtago, New ZealandTerminiWingatuiMiddlemarchStations3ServiceOperator(s)Dunedin RailwaysHistoryOpened1921 (to Cromwell)Closed1980 (Clyde - Cromwell)1990 (Middlemarch - Clyde)TechnicalLine length64 km (originally 236 km)Number of tracks1Track gauge3 ft 6&#...

 

Funicular railway in Lisbon, Portugal Glória FunicularAscensor da GlóriaThe tram car descending to the lower stationGeneral informationTypeFunicularLocationLisbon, PortugalCoordinates38°42′58″N 9°8′34″W / 38.71611°N 9.14278°W / 38.71611; -9.14278OwnerPortuguese RepublicManagementCarrisTechnical detailsMaterialSteelDesign and constructionArchitect(s)Raoul Mesnier du PonsardWebsitewww.carris.pt/en/ascensor-da-gloria/ Portuguese National MonumentTypeNon-mova...

 

林世嘉Lin Shih-chia 中華民國第八屆立法委員 任期2012年2月1日—2013年7月15日喪失黨籍 继任葉津鈴选区全國不分區及僑居國外國民立法委員選舉區 个人资料性别女出生 (1969-04-15) 1969年4月15日(55歲) 中華民國(臺灣)臺中市政党 民主進步黨(2019年11月14日-)其他政党 台灣團結聯盟(-2013年7月1日)無黨籍(2013年-2019年) 学历 國立陽明大學衛生福利研究所 國...

Hyla gratiosa Kahimtang han Pagpapabilin Diri gud Kababarak-an  (IUCN 3.1)[1] Siyentipiko nga pagklasipika Ginhadi-an: Animalia Phylum: Chordata Ubosphylum: Vertebrata Klase: Amphibia Orden: Anura Banay: Hylidae Genus: Hyla Espesye: Hyla gratiosa Binomial nga ngaran Hyla gratiosaLeConte, 1856 An Hyla gratiosa[2][3][4][5][6][7] in uska species han Anura nga ginhulagway ni Leconte hadton 1856. An Hyla gratiosa in nahilalakip ha genus...

 

بطولة كاريوكا 1978 تفاصيل الموسم بطولة كاريوكا  البلد البرازيل  البطل نادي فلامينغو  بطولة كاريوكا 1977  بطولة كاريوكا 1979  تعديل مصدري - تعديل   بطولة كاريوكا 1978 هو موسم من بطولة كاريوكا. فاز فيه نادي فلامنغو.[1][2] نتائج الموسم مراجع ^ Futebolnacional.com.br – Championship...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!