In theoretical physics, quantum geometry is the set of mathematical concepts that generalize geometry to describe physical phenomena at distance scales comparable to the Planck length. At such distances, quantum mechanics has a profound effect on physical phenomena.
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses it to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions[clarification needed], minimal possible distance scale, and other effects that challenge intuition. More technically, quantum geometry refers to the shape of a spacetime manifold as experienced by D-branes, which includes quantum corrections to the metric tensor, such as the worldsheet instantons. For example, the quantum volume of a cycle is computed from the mass of a brane wrapped on this cycle.
In an alternative approach to quantum gravity called loop quantum gravity (LQG), the phrase "quantum geometry" usually refers to the formalism within LQG where the observables that capture the information about the geometry are well-defined operators on a Hilbert space. In particular, certain physical observables, such as the area, have a discrete spectrum. LQG is non-commutative.[1]
It is possible (but considered unlikely) that this strictly quantized understanding of geometry is consistent with the quantum picture of geometry arising from string theory.
and x1, x2, x3 are an arbitrary set of coordinates, the upper indices indicate contravariance, lower indices indicate covariance, so explicitly the quantum state in differential form is:
The overlap integral is given by:
in differential form this is
The probability of finding the particle in some region of space R is given by the integral over that region:
provided the wave function is normalized. When R is all of 3d position space, the integral must be 1 if the particle exists.