Louis de Broglie was the sixteenth member elected to occupy seat 1 of the Académie française in 1944, and served as Perpetual Secretary of the French Academy of Sciences.[10][11] De Broglie became the first high-level scientist to call for establishment of a multi-national laboratory, a proposal that led to the establishment of the European Organization for Nuclear Research (CERN).[12]
Biography
Family and education
Louis de Broglie belonged to the famous aristocratic family of Broglie, whose representatives for several centuries occupied important military and political posts in France. The father of the future physicist, Louis-Alphonse-Victor, 5th duc de Broglie, was married to Pauline d’Armaille, the granddaughter of the Napoleonic General Philippe Paul, comte de Ségur and his wife, the biographer, Marie Célestine Amélie d'Armaillé. They had five children; in addition to Louis, these were: Albertina (1872–1946), subsequently the Marquise de Luppé; Maurice (1875–1960), subsequently a famous experimental physicist; Philip (1881–1890), who died two years before the birth of Louis, and Pauline, Comtesse de Pange (1888–1972), subsequently a famous writer.[13]
Louis was born in Dieppe, Seine-Maritime. As the youngest child in the family, Louis grew up in relative loneliness, read a lot, and was fond of history, especially political. From early childhood, he had a good memory and could accurately read an excerpt from a theatrical production or give a complete list of ministers of the Third Republic of France. For this, he was predicted to become a great statesman in the future.[14]
De Broglie had intended a career in humanities, and received his first degree (licence ès lettres) in history. Afterwards he turned his attention toward mathematics and physics and received a degree (licence ès sciences) in physics. With the outbreak of the First World War in 1914, he offered his services to the army in the development of radio communications.
Military service
After graduation, Louis de Broglie joined the engineering forces to undergo compulsory service. It began at Fort Mont Valérien, but soon, on the initiative of his brother, he was seconded to the Wireless Communications Service and worked on the Eiffel Tower, where the radio transmitter was located. Louis de Broglie remained in military service throughout the First World War, dealing with purely technical issues. In particular, together with Léon Brillouin and brother Maurice, he participated in establishing wireless communications with submarines. Louis de Broglie was demobilized in August 1919 with the rank of adjudant. Later, the scientist regretted that he had to spend about six years away from the fundamental problems of science that interested him.[14][15]
Scientific and pedagogical career
His 1924 thesis Recherches sur la théorie des quanta[16] (Research on the Theory of the Quanta) introduced his theory of electron waves. This included the wave–particle duality theory of matter, based on the work of Max Planck and Albert Einstein on light. This research culminated in the de Broglie hypothesis stating that any moving particle or object had an associated wave. De Broglie thus created a new field in physics, the mécanique ondulatoire, or wave mechanics, uniting the physics of energy (wave) and matter (particle). He won the Nobel Prize in Physics in 1929 "for his discovery of the wave nature of electrons".[17]
In his later career, de Broglie worked to develop a causal explanation of wave mechanics, in opposition to the wholly probabilistic models which dominate quantum mechanical theory; it was refined by David Bohm in the 1950s. The theory has since been known as the De Broglie–Bohm theory.
In addition to strictly scientific work, de Broglie thought and wrote about the philosophy of science, including the value of modern scientific discoveries. In 1930 he founded the book series Actualités scientifiques et industrielles published by Éditions Hermann.[18]
De Broglie became a member of the Académie des sciences in 1933, and was the academy's perpetual secretary from 1942. He was asked to join Le Conseil de l'Union Catholique des Scientifiques Francais, but declined because he was non-religious.[19][20]
In 1941, he was made a member of the National Council of Vichy France.[21] On 12 October 1944, he was elected to the Académie Française, replacing mathematician Émile Picard. Because of the deaths and imprisonments of Académie members during the occupation and other effects of the war, the Académie was unable to meet the quorum of twenty members for his election; due to the exceptional circumstances, however, his unanimous election by the seventeen members present was accepted. In an event unique in the history of the Académie, he was received as a member by his own brother Maurice, who had been elected in 1934. UNESCO awarded him the first Kalinga Prize in 1952 for his work in popularizing scientific knowledge, and he was elected a Foreign Member of the Royal Society on 23 April 1953.
In 1961, he received the title of Knight of the Grand Cross in the Légion d'honneur. De Broglie was awarded a post as counselor to the French High Commission of Atomic Energy in 1945 for his efforts to bring industry and science closer together. He established a center for applied mechanics at the Henri Poincaré Institute, where research into optics, cybernetics, and atomic energy were carried out. He inspired the formation of the International Academy of Quantum Molecular Science and was an early member.[22]
Louis never married. When he died on 19 March 1987 in Louveciennes at the age of 94,[6] he was succeeded as duke by a distant cousin, Victor-François, 8th duc de Broglie. His funeral was held 23 March 1987 at the Church of Saint-Pierre-de-Neuilly.[23]
The first works of Louis de Broglie (early 1920s) were performed in the laboratory of his older brother Maurice and dealt with the features of the photoelectric effect and the properties of x-rays. These publications examined the absorption of X-rays and described this phenomenon using the Bohr theory, applied quantum principles to the interpretation of photoelectron spectra, and gave a systematic classification of X-ray spectra.[14] The studies of X-ray spectra were important for elucidating the structure of the internal electron shells of atoms (optical spectra are determined by the outer shells). Thus, the results of experiments conducted together with Alexandre Dauvillier, revealed the shortcomings of the existing schemes for the distribution of electrons in atoms; these difficulties were eliminated by Edmund Stoner.[24] Another result was the elucidation of the insufficiency of the Sommerfeld formula for determining the position of lines in X-ray spectra; this discrepancy was eliminated after the discovery of the electron spin. In 1925 and 1926, Leningrad physicist Orest Khvolson nominated the de Broglie brothers for the Nobel Prize for their work in the field of X-rays.[13]
Studying the nature of X-ray radiation and discussing its properties with his brother Maurice, who considered these rays to be some kind of combination of waves and particles, contributed to Louis de Broglie's awareness of the need to build a theory linking particle and wave representations. In addition, he was familiar with the works (1919–1922) of Marcel Brillouin, which proposed a hydrodynamic model of an atom and attempted to relate it to the results of Bohr's theory. The starting point in the work of Louis de Broglie was the idea of Einstein about the quanta of light. In his first article on this subject, published in 1922, the French scientist considered blackbody radiation as a gas of light quanta and, using classical statistical mechanics, derived the Wien radiation law in the framework of such a representation. In his next publication, he tried to reconcile the concept of light quanta with the phenomena of interference and diffraction and came to the conclusion that it was necessary to associate a certain periodicity with quanta. In this case, light quanta were interpreted by him as relativistic particles of very small mass.[25]
It remained to extend the wave considerations to any massive particles, and in the summer of 1923 a decisive breakthrough occurred. De Broglie outlined his ideas in a short note "Waves and quanta" (French: Ondes et quanta, presented at a meeting of the Paris Academy of Sciences on September 10, 1923),[26] which marked the beginning of the creation of wave mechanics. In this paper and his subsequent PhD thesis,[16] the scientist suggested that a moving particle with energy E and velocity v is characterized by some internal periodic process with a frequency (later known as Compton frequency), where is the Planck constant. To reconcile these considerations, based on the quantum principle, with the ideas of special relativity, de Broglie associated wave he called a "phase wave" with a moving body, which propagates with the phase velocity. Such a wave, which later received the name matter wave, or de Broglie wave, in the process of body movement remains in phase with the internal periodic process. Having then examined the motion of an electron in a closed orbit, the scientist showed that the requirement for phase matching directly leads to the quantum Bohr-Sommerfeld condition, that is, to quantize the angular momentum. In the next two notes (reported at the meetings on September 24 and October 8, respectively), de Broglie came to the conclusion that the particle velocity is equal to the group velocity of phase waves, and the particle moves along the normal to surfaces of equal phase. In the general case, the trajectory of a particle can be determined using Fermat's principle (for waves) or the principle of least action (for particles), which indicates a connection between geometric optics and classical mechanics.[27]
This theory set the basis of wave mechanics. It was supported by Einstein, confirmed by the electron diffraction experiments of G P Thomson and Davisson and Germer, and generalized by the work of Erwin Schrödinger.
From a philosophical viewpoint, this theory of matter-waves has contributed greatly to the ruin of the atomism of the past. Originally, de Broglie thought that real wave (i.e., having a direct physical interpretation) was associated with particles. In fact, the wave aspect of matter was formalized by a wavefunction defined by the Schrödinger equation, which is a pure mathematical entity having a probabilistic interpretation, without the support of real physical elements. This wavefunction gives an appearance of wave behavior to matter, without making real physical waves appear. However, until the end of his life de Broglie returned to a direct and real physical interpretation of matter-waves, following the work of David Bohm.
Conjecture of an internal clock of the electron
In his 1924 thesis, de Broglie conjectured that the electron has an internal clock that constitutes part of the mechanism by which a pilot wave guides a particle.[28] Subsequently, David Hestenes has proposed a link to the zitterbewegung that was suggested by Schrödinger.[29]
While attempts at verifying the internal clock hypothesis and measuring clock frequency are so far not conclusive,[30] recent experimental data is at least compatible with de Broglie's conjecture.[31]
Non-nullity and variability of mass
According to de Broglie, the neutrino and the photon have rest masses that are non-zero, though very low. That a photon is not quite massless is imposed by the coherence of his theory. Incidentally, this rejection of the hypothesis of a massless photon enabled him to doubt the hypothesis of the expansion of the universe.
In addition, he believed that the true mass of particles is not constant, but variable, and that each particle can be represented as a thermodynamic machine equivalent to a cyclic integral of action.
In the second part of his 1924 thesis, de Broglie used the equivalence of the mechanical principle of least action with Fermat's optical principle: "Fermat's principle applied to phase waves is identical to Maupertuis' principle applied to the moving body; the possible dynamic trajectories of the moving body are identical to the possible rays of the wave." This latter equivalence had been pointed out by William Rowan Hamilton a century earlier, and published by him around 1830, for the case of light.
Duality of the laws of nature
Far from claiming to make "the contradiction disappear" which Max Born thought could be achieved with a statistical approach, de Broglie extended wave–particle duality to all particles (and to crystals which revealed the effects of diffraction) and extended the principle of duality to the laws of nature.
His last work made a single system of laws from the two large systems of thermodynamics and of mechanics:[citation needed]
When Boltzmann and his continuators developed their statistical interpretation of Thermodynamics, one could have considered Thermodynamics to be a complicated branch of Dynamics. But, with my actual ideas, it's Dynamics that appear to be a simplified branch of Thermodynamics. I think that, of all the ideas that I've introduced in quantum theory in these past years, it's that idea that is, by far, the most important and the most profound.
That idea seems to match the continuous–discontinuous duality, since its dynamics could be the limit of its thermodynamics when transitions to continuous limits are postulated. It is also close to that of Gottfried Wilhelm Leibniz, who posited the necessity of "architectonic principles" to complete the system of mechanical laws.[citation needed]
However, according to him, there is less duality, in the sense of opposition, than synthesis (one is the limit of the other)[citation needed] and the effort of synthesis is constant according to him, like in his first formula, in which the first member pertains to mechanics and the second to optics:
This theory, which dates from 1934, introduces the idea that the photon is equivalent to the fusion of two Dirac neutrinos. It is not currently accepted by the majority of physicists.
Hidden thermodynamics
De Broglie's final idea was the hidden thermodynamics of isolated particles. It is an attempt to bring together the three furthest principles of physics: the principles of Fermat, Maupertuis, and Carnot.
In this work, action becomes a sort of opposite to entropy, through an equation that relates the only two universal dimensions of the form:
As a consequence of its great impact, this theory brings back the uncertainty principle to distances around extrema of action, distances corresponding to reductions in entropy.
Physique et microphysique (Physics and Microphysics), Albin Michel, 1947.
Vie et œuvre de Paul Langevin (The life and works of Paul Langevin), French Academy of Sciences, 1947.
Optique électronique et corpusculaire (Electronic and Corpuscular Optics), Herman, 1950.
Savants et découvertes (Scientists and discoveries), Paris, Albin Michel, 1951.
Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution. Paris: Gauthier-Villars, 1956.
English translation: Non-linear Wave Mechanics: A Causal Interpretation. Amsterdam: Elsevier, 1960.
Nouvelles perspectives en microphysique (New prospects in Microphysics), Albin Michel, 1956.
Sur les sentiers de la science (On the Paths of Science), Paris: Albin Michel, 1960.
Introduction à la nouvelle théorie des particules de M. Jean-Pierre Vigier et de ses collaborateurs, Paris: Gauthier-Villars, 1961. Paris: Albin Michel, 1960.
English translation: Introduction to the Vigier Theory of elementary particles, Amsterdam: Elsevier, 1963.
Étude critique des bases de l'interprétation actuelle de la mécanique ondulatoire, Paris: Gauthier-Villars, 1963.
English translation: The Current Interpretation of Wave Mechanics: A Critical Study, Amsterdam, Elsevier, 1964.
Certitudes et incertitudes de la science (Certitudes and Incertitudes of Science). Paris: Albin Michel, 1966.
with Louis Armand, Pierre Henri Simon and others. Albert Einstein. Paris: Hachette, 1966.
English translation: Einstein. Peebles Press, 1979.[36]
Recherches d'un demi-siècle (Research of a half-century), Albin Michel, 1976.
Les incertitudes d'Heisenberg et l'interprétation probabiliste de la mécanique ondulatoire (Heisenberg uncertainty and wave mechanics probabilistic interpretation), Gauthier-Villars, 1982.
^Léon Warnant (1987). Dictionnaire de la prononciation française dans sa norme actuelle (in French) (3rd ed.). Gembloux: J. Duculot, S. A. ISBN978-2-8011-0581-8.
^Jean-Marie Pierret (1994). Phonétique historique du français et notions de phonétique générale (in French). Louvain-la-Neuve: Peeters. p. 102. ISBN978-9-0683-1608-7.
^ abM. J. Nye. (1997). "Aristocratic Culture and the Pursuit of Science: The De Broglies in Modern France". Isis. 88 (3) (Isis ed.): 397–421. doi:10.1086/383768. JSTOR236150. S2CID143439041.
^ abcA. Abragam. (1988). "Louis Victor Pierre Raymond de Broglie". 34 (Biographical Memoirs of Fellows of the Royal Society ed.): 22–41. doi:10.1098/rsbm.1988.0002. {{cite journal}}: Cite journal requires |journal= (help)
^J. Lacki. (2008). "Louis de Broglie". 1 (New Dictionary of Scientific Biography ed.). Detroit: Charles Scribner's Sons: 409–415. {{cite journal}}: Cite journal requires |journal= (help)
^ abde Broglie, Louis Victor. "On the Theory of Quanta"(PDF). Foundation of Louis de Broglie (English translation by A.F. Kracklauer, 2004. ed.). Retrieved 2 January 2020.
^Evans, James; Thorndike, Alan S. (2007). Quantum Mechanics at the Crossroads: New Perspectives From History, Philosophy And Physics. Springer. p. 71. ISBN9783540326632. Asked to join Le Conseil de l'Union Catholique des Scientifiques Français, Louis declined because, he said, he had ceased the religious practices of his youth.
^Kimball, John (2015). Physics Curiosities, Oddities, and Novelties. CRC Press. p. 323. ISBN978-1-4665-7636-0.
^ Les professeurs de la Faculté des sciences de Paris [1]
^Louis Néel; Fondation Louis de Broglie; Conservatoire national des arts et métiers (France) (1988). Louis de Broglie que nous avons connu. Fondation Louis de Broglie, Conservatoire national des arts et métiers.
^The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. New York: Wiley-Interscience, 1974. ISBN0-471-43958-4
^J. Mehra. (2001). J. Mehra. (ed.). "Louis de Broglie and the phase waves associated with matter" (The Golden Age of Theoretical Physics ed.). World Scientific: 546–570. {{cite journal}}: Cite journal requires |journal= (help)
^Max JammerThe Conceptual Development of Quantum Mechanics. New York: McGraw-Hill, 1966 2nd ed: New York: American Institute of Physics, 1989. ISBN0-88318-617-9. Olivier Darrigol, "Strangeness and soundness in Louis de Broglie's early works", Physis, 30 (1993): 303–372.
^See for example the description of de Broglie's view in: David Bohm, Basil Hiley: The de Broglie pilot wave theory and the further development and new insights arising out of it, Foundations of Physics, volume 12, number 10, 1982, Appendix: On the background of the papers on trajectories interpretation, by D. Bohm, (PDFArchived 19 August 2011 at the Wayback Machine)
^D. Hestenes, October 1990, The Zitterbewegung interpretation of quantum mechanics, Foundations of Physics, vol. 20, no. 10, pp. 1213–1232
^See for example G.R. Osche, Electron channeling resonance and de Broglie's internal clock, Annales de la Fondation Louis de Broglie, vol. 36, 2001, pp. 61–71 (full text)
^Catillon, Foundations of Physics, July 2001, vol. 38, no. 7, pp. 659–664
У Вікіпедії є статті про інших людей із прізвищем Чжао. Чжао Чжіцянь Народження 8 серпня 1829(1829-08-08)[1]Шаосін, КНРСмерть 1884[2][3][…] або 18 листопада 1884(1884-11-18)[1] (55 років)Країна Династія Цін[5]Діяльність художник, каліграф, письменник, митець ...
Capri-SunCapri-SonneJenisSari buahProdusenRudolf Wild & Co.Lisensi kepada Kraft Foods, Coca-Cola Europacific Partners dan berbagai perusahaan lainnyaNegara asalJermanDiperkenalkan1969; 53 tahun lalu (1969) (dengan nama Capri-Sonne)RasaBeragam menurut pasarSitus webcapri-sun.com Capri-Sun merupakan sebuah merek minuman ringan berbentuk sari buah asal Jerman. Produk ini diciptakan oleh Rudolf Wild di tahun 1969 dengan nama Capri-Sonne, dan kini sudah dijual di lebih dari 100 negara ole...
For the song from Disney's The Jungle Book, see The Bare Necessities. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial men...
H.SatonoS.H, S.P.Bupati Lampung Timur ke-3Masa jabatan2005 – 26 Mei 2011PresidenSusilo Bambang YudhoyonoGubernurSjachroedin Zainal PagaralamWakilErwin ArifinPendahuluBahusin Syaiful Anwar,S.H. (Plt.)PenggantiErwin Arifin Informasi pribadiLahir(1953-07-08)8 Juli 1953Pekalongan, Lampung Timur, Lampung, IndonesiaMeninggal12 Juli 2021(2021-07-12) (umur 68)Jakarta, IndonesiaKebangsaanIndonesiaSuami/istriRice MegawatiAnakDoni Mahesa Praja, S.H. Fiki FernandesAlma materUniversita...
Belgian racing cyclist Gijs Van HoeckeVan Hoecke in 2023Personal informationBorn (1991-11-12) 12 November 1991 (age 32)Ghent, BelgiumHeight186 cm (6 ft 1 in)Weight75 kg (165 lb)Team informationCurrent teamHuman Powered HealthDisciplinesRoadTrackRoleRiderAmateur teams2010Beveren 20002011Omega Pharma–Lotto Davo Professional teams2012–2016Topsport Vlaanderen–Mercator2017–2018LottoNL–Jumbo2019–2020CCC Team[1]2021–2022AG2R Citroën Team[...
2007–08 season of Brentford F.C. Brentford 2007–08 football seasonBrentford2007–08 seasonChairmanGreg DykeManagerTerry Butcher(until 11 December 2007)Andy Scott(from 11 December 2007)StadiumGriffin ParkLeague Two14thFA CupFirst roundLeague CupFirst roundFootball League TrophyFirst roundTop goalscorerLeague: Poole (14)All: Poole (14)Highest home attendance6,246Lowest home attendance3,155Average home league attendance4,469 Home colours Away colours ← 2006–072008–09 ...
Culture of Pashtun people Part of a series onPashtuns Art Culture Diaspora Discrimination against Pashtuns Land List of Pashtuns Language Tribes Empires and dynasties Khalji Bengal Khalji Delhi Malwa Lodi Delhi Sur Karrani Taymanis Hotak Durrani Barakzai vte Pashtun culture (Pashto: پښتون کلتور) is based on Pashtunwali, as well as speaking of the Pashto language and wearing Pashtun dress. Pashtunwali and Islam are the two main factors which make the baseline for the social behavior ...
Seleção Brasileira de Futebol Temporada 2012 Treinador Mano Menezes Posição final Jogos 14 (10 vitórias, 1 empate, 3 derrotas) Saldo de gols 27 (40 gols marcados e 13 gols sofridos) Artilheiro Neymar (10 gols) Amistosos Jogos 12 (9 vitórias, 1 empate, 2 derrotas) Saldo de gols 27 (37 gols marcados e 10 gols sofridos) Artilheiro Neymar (9 gols) Superclássico das Américas Resultado Campeão Jogos 2 (1 vitória, 1 derrota) Saldo de gols 0 (3 gols marcados e 3 gol...
Commercial chess variant <W4 A B C D E F G H I W3> J 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 A<W1 B C D E F G H I JW2> Omega Chess starting position Omega Chess is a commercial chess variant designed and released in 1992 by Daniel MacDonald. The game is played on a 10×10 board with four extra squares, each added diag...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2016) قمّة أبوظبي للإعلام هي قمة دولية حول الإعلام تعقد مرة كل سنتين في إمارة أبوظبي بالإمارات العربية المتحدة من قبل هيئة المنطقة الإعلامية- أبوظبي [[توفور54} twofour54...
American professional wrestler This article is about the professional wrestler. For other people with the same name, see James Ellsworth. James EllsworthEllsworth in May 2018Birth nameJames Ellsworth Morris[1]Born (1984-12-11) December 11, 1984 (age 38)[2]Baltimore, Maryland, U.S.[2]Children2Professional wrestling careerRing name(s)James Ellsworth[3][2]Jimmy Dream[2]Billed height5 ft 9 in (1.75 m)[3]Billed weight176 l...
River in the South Island of New Zealand Kawarau RiverKawarau River with Roaring Meg hydro stationLocationCountryNew ZealandRegionOtagoPhysical characteristicsSource • locationLake Wakatipu Mouth • locationLake DunstanLength60 km (37 mi) The Kawarau River is a river in the South Island of New Zealand. It drains Lake Wakatipu in northwestern Otago via the lake's Frankton Arm. The river flows generally eastwards for about 60 kilometres ...
BosnaJenisSandwichTempat asalAustriaBahan utamaRoti putih, Bratwurst, bawang, saus tomat, mustard, bubuk kari Media: Bosna Bosna (kadang disebut Bosner) adalah makanan cepat saji Austria yang diduga berasal dari Salzburg atau Linz. Makanan ini kini populer di Austria barat dan Bayern selatan. Makanan ini menyerupai hot dog dan terdiri dari sosis Bratwurst dan bawang di dalam roti putih yang diberi saus tomat, mustard, atau bubuk kari. Ragam Terdapat beberapa ragam bosna: Kleine Bosn...
SongWe're Going to Hang out the Washing on the Siegfried LineSongPublished1939GenreSecond World War songComposer(s)Michael CarrLyricist(s)Jimmy Kennedy We're Going to Hang out the Washing on the Siegfried Line is a popular song by Irish songwriter Jimmy Kennedy, written whilst he was a Captain in the British Expeditionary Force during the early stages of the Second World War, with music by Michael Carr. It was first published in 1939.[1] Background and composition The Siegfried Line w...
Not to be confused with Mahamaya Mandir of Raipur. Hindu temple in Chhattisgarh, India Mahamaya TempleTemple entranceReligionAffiliationHinduismDistrictBilaspurDeityMahamayaLocationLocationRatanpurStateChhattisgarhCountryIndiaLocation in ChhattisgarhShow map of ChhattisgarhMahamaya Temple (India)Show map of IndiaMahamaya Temple (Asia)Show map of AsiaGeographic coordinates22°17′18″N 82°09′36″E / 22.2884°N 82.1599°E / 22.2884; 82.1599ArchitectureTypeHindu tem...