Pseudovector

A loop of wire (black), carrying a current I, creates a magnetic field B (blue). If the position and current of the wire are reflected across the plane indicated by the dashed line, the magnetic field it generates would not be reflected: Instead, it would be reflected and reversed. The position and current at any point in the wire are "true" vectors, but the magnetic field B is a pseudovector.[1]

In physics and mathematics, a pseudovector (or axial vector)[2] is a quantity that behaves like a vector in many situations, but its direction does not conform when the object is rigidly transformed by rotation, translation, reflection, etc. This can also happen when the orientation of the space is changed. For example, the angular momentum is a pseudovector because it is often described as a vector, but by just changing the position of reference (and changing the position vector), angular momentum can reverse direction, which is not supposed to happen with true vectors (also known as polar vectors).[3]

One example of a pseudovector is the normal to an oriented plane. An oriented plane can be defined by two non-parallel vectors, a and b,[4] that span the plane. The vector a × b is a normal to the plane (there are two normals, one on each side – the right-hand rule will determine which), and is a pseudovector. This has consequences in computer graphics, where it has to be considered when transforming surface normals. In three dimensions, the curl of a polar vector field at a point and the cross product of two polar vectors are pseudovectors.[5]

A number of quantities in physics behave as pseudovectors rather than polar vectors, including magnetic field and angular velocity. In mathematics, in three dimensions, pseudovectors are equivalent to bivectors, from which the transformation rules of pseudovectors can be derived. More generally, in n-dimensional geometric algebra, pseudovectors are the elements of the algebra with dimension n − 1, written ⋀n−1Rn. The label "pseudo-" can be further generalized to pseudoscalars and pseudotensors, both of which gain an extra sign-flip under improper rotations compared to a true scalar or tensor.

Physical examples

Physical examples of pseudovectors include torque,[4] angular velocity, angular momentum,[4] magnetic field,[4] vorticity and magnetic dipole moment.

Each wheel of the car on the left driving away from an observer has an angular momentum pseudovector pointing left. The same is true for the mirror image of the car. The fact that the arrows point in the same direction, rather than being mirror images of each other indicates that they are pseudovectors.

Consider the pseudovector angular momentum L = Σ(r × p). Driving in a car, and looking forward, each of the wheels has an angular momentum vector pointing to the left. If the world is reflected in a mirror which switches the left and right side of the car, the "reflection" of this angular momentum "vector" (viewed as an ordinary vector) points to the right, but the actual angular momentum vector of the wheel (which is still turning forward in the reflection) still points to the left, corresponding to the extra sign flip in the reflection of a pseudovector.

The distinction between polar vectors and pseudovectors becomes important in understanding the effect of symmetry on the solution to physical systems. Consider an electric current loop in the z = 0 plane that inside the loop generates a magnetic field oriented in the z direction. This system is symmetric (invariant) under mirror reflections through this plane, with the magnetic field unchanged by the reflection. But reflecting the magnetic field as a vector through that plane would be expected to reverse it; this expectation is corrected by realizing that the magnetic field is a pseudovector, with the extra sign flip leaving it unchanged.

In physics, pseudovectors are generally the result of taking the cross product of two polar vectors or the curl of a polar vector field. The cross product and curl are defined, by convention, according to the right hand rule, but could have been just as easily defined in terms of a left-hand rule. The entire body of physics that deals with (right-handed) pseudovectors and the right hand rule could be replaced by using (left-handed) pseudovectors and the left hand rule without issue. The (left) pseudovectors so defined would be opposite in direction to those defined by the right-hand rule.

While vector relationships in physics can be expressed in a coordinate-free manner, a coordinate system is required in order to express vectors and pseudovectors as numerical quantities. Vectors are represented as ordered triplets of numbers: e.g. , and pseudovectors are represented in this form too. When transforming between left and right-handed coordinate systems, representations of pseudovectors do not transform as vectors, and treating them as vector representations will cause an incorrect sign change, so that care must be taken to keep track of which ordered triplets represent vectors, and which represent pseudovectors. This problem does not exist if the cross product of two vectors is replaced by the exterior product of the two vectors, which yields a bivector which is a 2nd rank tensor and is represented by a 3×3 matrix. This representation of the 2-tensor transforms correctly between any two coordinate systems, independently of their handedness.

Details

The definition of a "vector" in physics (including both polar vectors and pseudovectors) is more specific than the mathematical definition of "vector" (namely, any element of an abstract vector space). Under the physics definition, a "vector" is required to have components that "transform" in a certain way under a proper rotation: In particular, if everything in the universe were rotated, the vector would rotate in exactly the same way. (The coordinate system is fixed in this discussion; in other words this is the perspective of active transformations.) Mathematically, if everything in the universe undergoes a rotation described by a rotation matrix R, so that a displacement vector x is transformed to x = Rx, then any "vector" v must be similarly transformed to v = Rv. This important requirement is what distinguishes a vector (which might be composed of, for example, the x-, y-, and z-components of velocity) from any other triplet of physical quantities (For example, the length, width, and height of a rectangular box cannot be considered the three components of a vector, since rotating the box does not appropriately transform these three components.)

(In the language of differential geometry, this requirement is equivalent to defining a vector to be a tensor of contravariant rank one. In this more general framework, higher rank tensors can also have arbitrarily many and mixed covariant and contravariant ranks at the same time, denoted by raised and lowered indices within the Einstein summation convention.)

A basic and rather concrete example is that of row and column vectors under the usual matrix multiplication operator: in one order they yield the dot product, which is just a scalar and as such a rank zero tensor, while in the other they yield the dyadic product, which is a matrix representing a rank two mixed tensor, with one contravariant and one covariant index. As such, the noncommutativity of standard matrix algebra can be used to keep track of the distinction between covariant and contravariant vectors. This is in fact how the bookkeeping was done before the more formal and generalised tensor notation came to be. It still manifests itself in how the basis vectors of general tensor spaces are exhibited for practical manipulation.

The discussion so far only relates to proper rotations, i.e. rotations about an axis. However, one can also consider improper rotations, i.e. a mirror-reflection possibly followed by a proper rotation. (One example of an improper rotation is inversion through a point in 3-dimensional space.) Suppose everything in the universe undergoes an improper rotation described by the improper rotation matrix R, so that a position vector x is transformed to x = Rx. If the vector v is a polar vector, it will be transformed to v = Rv. If it is a pseudovector, it will be transformed to v = −Rv.

The transformation rules for polar vectors and pseudovectors can be compactly stated as

where the symbols are as described above, and the rotation matrix R can be either proper or improper. The symbol det denotes determinant; this formula works because the determinant of proper and improper rotation matrices are +1 and −1, respectively.

Behavior under addition, subtraction, scalar multiplication

Suppose v1 and v2 are known pseudovectors, and v3 is defined to be their sum, v3 = v1 + v2. If the universe is transformed by a rotation matrix R, then v3 is transformed to

So v3 is also a pseudovector. Similarly one can show that the difference between two pseudovectors is a pseudovector, that the sum or difference of two polar vectors is a polar vector, that multiplying a polar vector by any real number yields another polar vector, and that multiplying a pseudovector by any real number yields another pseudovector.

On the other hand, suppose v1 is known to be a polar vector, v2 is known to be a pseudovector, and v3 is defined to be their sum, v3 = v1 + v2. If the universe is transformed by an improper rotation matrix R, then v3 is transformed to

Therefore, v3 is neither a polar vector nor a pseudovector (although it is still a vector, by the physics definition). For an improper rotation, v3 does not in general even keep the same magnitude:

.

If the magnitude of v3 were to describe a measurable physical quantity, that would mean that the laws of physics would not appear the same if the universe was viewed in a mirror. In fact, this is exactly what happens in the weak interaction: Certain radioactive decays treat "left" and "right" differently, a phenomenon which can be traced to the summation of a polar vector with a pseudovector in the underlying theory. (See parity violation.)

Behavior under cross products

Under inversion the two vectors change sign, but their cross product is invariant [black are the two original vectors, grey are the inverted vectors, and red is their mutual cross product].

For a rotation matrix R, either proper or improper, the following mathematical equation is always true:

,

where v1 and v2 are any three-dimensional vectors. (This equation can be proven either through a geometric argument or through an algebraic calculation.)

Suppose v1 and v2 are known polar vectors, and v3 is defined to be their cross product, v3 = v1 × v2. If the universe is transformed by a rotation matrix R, then v3 is transformed to

So v3 is a pseudovector. Similarly, one can show:

  • polar vector × polar vector = pseudovector
  • pseudovector × pseudovector = pseudovector
  • polar vector × pseudovector = polar vector
  • pseudovector × polar vector = polar vector

This is isomorphic to addition modulo 2, where "polar" corresponds to 1 and "pseudo" to 0.

Examples

From the definition, it is clear that a displacement vector is a polar vector. The velocity vector is a displacement vector (a polar vector) divided by time (a scalar), so is also a polar vector. Likewise, the momentum vector is the velocity vector (a polar vector) times mass (a scalar), so is a polar vector. Angular momentum is the cross product of a displacement (a polar vector) and momentum (a polar vector), and is therefore a pseudovector. Torque is angular momentum (a pseudovector) divided by time (a scalar), so is also a pseudovector. Continuing this way, it is straightforward to classify any of the common vectors in physics as either a pseudovector or polar vector. (There are the parity-violating vectors in the theory of weak-interactions, which are neither polar vectors nor pseudovectors. However, these occur very rarely in physics.)

The right-hand rule

Above, pseudovectors have been discussed using active transformations. An alternate approach, more along the lines of passive transformations, is to keep the universe fixed, but switch "right-hand rule" with "left-hand rule" everywhere in math and physics, including in the definition of the cross product and the curl. Any polar vector (e.g., a translation vector) would be unchanged, but pseudovectors (e.g., the magnetic field vector at a point) would switch signs. Nevertheless, there would be no physical consequences, apart from in the parity-violating phenomena such as certain radioactive decays.[6]

Formalization

One way to formalize pseudovectors is as follows: if V is an n-dimensional vector space, then a pseudovector of V is an element of the (n − 1)-th exterior power of V: ⋀n−1(V). The pseudovectors of V form a vector space with the same dimension as V.

This definition is not equivalent to that requiring a sign flip under improper rotations, but it is general to all vector spaces. In particular, when n is even, such a pseudovector does not experience a sign flip, and when the characteristic of the underlying field of V is 2, a sign flip has no effect. Otherwise, the definitions are equivalent, though it should be borne in mind that without additional structure (specifically, either a volume form or an orientation), there is no natural identification of ⋀n−1(V) with V.

Another way to formalize them is by considering them as elements of a representation space for . Vectors transform in the fundamental representation of with data given by , so that for any matrix in , one has . Pseudovectors transform in a pseudofundamental representation , with . Another way to view this homomorphism for odd is that in this case . Then is a direct product of group homomorphisms; it is the direct product of the fundamental homomorphism on with the trivial homomorphism on .

Geometric algebra

In geometric algebra the basic elements are vectors, and these are used to build a hierarchy of elements using the definitions of products in this algebra. In particular, the algebra builds pseudovectors from vectors.

The basic multiplication in the geometric algebra is the geometric product, denoted by simply juxtaposing two vectors as in ab. This product is expressed as:

where the leading term is the customary vector dot product and the second term is called the wedge product or exterior product. Using the postulates of the algebra, all combinations of dot and wedge products can be evaluated. A terminology to describe the various combinations is provided. For example, a multivector is a summation of k-fold wedge products of various k-values. A k-fold wedge product also is referred to as a k-blade.

In the present context the pseudovector is one of these combinations. This term is attached to a different multivector depending upon the dimensions of the space (that is, the number of linearly independent vectors in the space). In three dimensions, the most general 2-blade or bivector can be expressed as the wedge product of two vectors and is a pseudovector.[7] In four dimensions, however, the pseudovectors are trivectors.[8] In general, it is a (n − 1)-blade, where n is the dimension of the space and algebra.[9] An n-dimensional space has n basis vectors and also n basis pseudovectors. Each basis pseudovector is formed from the outer (wedge) product of all but one of the n basis vectors. For instance, in four dimensions where the basis vectors are taken to be {e1, e2, e3, e4}, the pseudovectors can be written as: {e234, e134, e124, e123}.

Transformations in three dimensions

The transformation properties of the pseudovector in three dimensions has been compared to that of the vector cross product by Baylis.[10] He says: "The terms axial vector and pseudovector are often treated as synonymous, but it is quite useful to be able to distinguish a bivector from its dual." To paraphrase Baylis: Given two polar vectors (that is, true vectors) a and b in three dimensions, the cross product composed from a and b is the vector normal to their plane given by c = a × b. Given a set of right-handed orthonormal basis vectors { e }, the cross product is expressed in terms of its components as:

where superscripts label vector components. On the other hand, the plane of the two vectors is represented by the exterior product or wedge product, denoted by ab. In this context of geometric algebra, this bivector is called a pseudovector, and is the Hodge dual of the cross product.[11] The dual of e1 is introduced as e23 e2e3 = e2e3, and so forth. That is, the dual of e1 is the subspace perpendicular to e1, namely the subspace spanned by e2 and e3. With this understanding,[12]

For details, see Hodge star operator § Three dimensions. The cross product and wedge product are related by:

where i = e1e2e3 is called the unit pseudoscalar.[13][14] It has the property:[15]

Using the above relations, it is seen that if the vectors a and b are inverted by changing the signs of their components while leaving the basis vectors fixed, both the pseudovector and the cross product are invariant. On the other hand, if the components are fixed and the basis vectors e are inverted, then the pseudovector is invariant, but the cross product changes sign. This behavior of cross products is consistent with their definition as vector-like elements that change sign under transformation from a right-handed to a left-handed coordinate system, unlike polar vectors.

Note on usage

As an aside, it may be noted that not all authors in the field of geometric algebra use the term pseudovector, and some authors follow the terminology that does not distinguish between the pseudovector and the cross product.[16] However, because the cross product does not generalize to other than three dimensions,[17] the notion of pseudovector based upon the cross product also cannot be extended to a space of any other number of dimensions. The pseudovector as a (n – 1)-blade in an n-dimensional space is not restricted in this way.

Another important note is that pseudovectors, despite their name, are "vectors" in the sense of being elements of a vector space. The idea that "a pseudovector is different from a vector" is only true with a different and more specific definition of the term "vector" as discussed above.

See also

Notes

  1. ^ Stephen A. Fulling; Michael N. Sinyakov; Sergei V. Tischchenko (2000). Linearity and the mathematics of several variables. World Scientific. p. 343. ISBN 981-02-4196-8.
  2. ^ "Details for IEV number 102-03-33: "axial vector"". International Electrotechnical Vocabulary (in Japanese). Retrieved 2023-11-07.
  3. ^ "Details for IEV number 102-03-34: "polar vector"". International Electrotechnical Vocabulary (in Japanese). Retrieved 2023-11-07.
  4. ^ a b c d RP Feynman: §52-5 Polar and axial vectors, Feynman Lectures in Physics, Vol. 1
  5. ^ Aleksandr Ivanovich Borisenko; Ivan Evgenʹevich Tarapov (1979). Vector and tensor analysis with applications (Reprint of 1968 Prentice-Hall ed.). Courier Dover. p. 125. ISBN 0-486-63833-2.
  6. ^ See Feynman Lectures, 52-7, "Parity is not conserved!".
  7. ^ William M Pezzaglia Jr. (1992). "Clifford algebra derivation of the characteristic hypersurfaces of Maxwell's equations". In Julian Ławrynowicz (ed.). Deformations of mathematical structures II. Springer. p. 131 ff. ISBN 0-7923-2576-1.
  8. ^ In four dimensions, such as a Dirac algebra, the pseudovectors are trivectors. Venzo De Sabbata; Bidyut Kumar Datta (2007). Geometric algebra and applications to physics. CRC Press. p. 64. ISBN 978-1-58488-772-0.
  9. ^ William E Baylis (2004). "§4.2.3 Higher-grade multivectors in Cℓn: Duals". Lectures on Clifford (geometric) algebras and applications. Birkhäuser. p. 100. ISBN 0-8176-3257-3.
  10. ^ William E Baylis (1994). Theoretical methods in the physical sciences: an introduction to problem solving using Maple V. Birkhäuser. p. 234, see footnote. ISBN 0-8176-3715-X.
  11. ^ R Wareham, J Cameron & J Lasenby (2005). "Application of conformal geometric algebra in computer vision and graphics". Computer algebra and geometric algebra with applications. Springer. p. 330. ISBN 3-540-26296-2. In three dimensions, a dual may be right-handed or left-handed; see Leo Dorst; Daniel Fontijne; Stephen Mann (2007). "Figure 3.5: Duality of vectors and bivectors in 3-D". Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2nd ed.). Morgan Kaufmann. p. 82. ISBN 978-0-12-374942-0.
  12. ^ Christian Perwass (2009). "§1.5.2 General vectors". Geometric Algebra with Applications in Engineering. Springer. p. 17. ISBN 978-3-540-89067-6.
  13. ^ David Hestenes (1999). "The vector cross product". New foundations for classical mechanics: Fundamental Theories of Physics (2nd ed.). Springer. p. 60. ISBN 0-7923-5302-1.
  14. ^ Venzo De Sabbata; Bidyut Kumar Datta (2007). "The pseudoscalar and imaginary unit". Geometric algebra and applications to physics. CRC Press. p. 53 ff. ISBN 978-1-58488-772-0.
  15. ^ Eduardo Bayro Corrochano; Garret Sobczyk (2001). Geometric algebra with applications in science and engineering. Springer. p. 126. ISBN 0-8176-4199-8.
  16. ^ For example, Bernard Jancewicz (1988). Multivectors and Clifford algebra in electrodynamics. World Scientific. p. 11. ISBN 9971-5-0290-9.
  17. ^ Stephen A. Fulling; Michael N. Sinyakov; Sergei V. Tischchenko (2000). Linearity and the mathematics of several variables. World Scientific. p. 340. ISBN 981-02-4196-8.

References

Read other articles:

Kelechi Nwakali Nazionalità  Nigeria Altezza 181 cm Peso 74 kg Calcio Ruolo Centrocampista Squadra  Chaves Carriera Giovanili  Diamond Football Academy2016 Arsenal Squadre di club1 2016-2017→  MVV29 (2)[1]2017-2018→  VVV-Venlo9 (1)2018→  MVV16 (4)[2]2018-2019→  Porto B16 (0)2019-2021 Huesca10 (0)2021→  Alcorcón18 (4)2021-2022 Huesca19 (0)2022-2023 Ponferradina36 (1)2023- Chaves6 (0) Nazionale 2015 Nig...

 

 

Tổng thống Trump đang gọi điện thoại vào năm 2017. Ông đã từng dùng các bí danh trong các cuộc phỏng vấn qua điện thoại trong suốt khoảng thời gian từ thập niên 1980 tới thập niên 1990 Doanh nhân, chính trị gia người Mỹ, và Tổng thống thứ 45 của Hoa Kỳ, Donald Trump, đã từng sử dụng một vài bí danh, trong đó bao gồm John Barron (hay John Baron), John Miller và David Dennison. Việc ông thường xuyên ph...

 

 

Estádio Olímpico Nilton SantosEngenhãoPemandangan udara stadion, 2016Informasi stadionNama lamaEstádio Olímpico João Havelange(30 Juni 2007 – 10 Februari 2017)PemilikPrefeitura do Rio de JaneiroOperatorBotafogoLokasiLokasiRio de Janeiro, BrasilTransportasi umumStasiun Olímpica de Engenho de Dentro, SuperViaKonstruksiDibuat2003–2007Dibuka2007, 2016Biaya pembuatanR$380 juta[1](US$192 juta)ArsitekCarlos Porto[2]Data teknisPermukaanRumputKapasitas46.931[3] 60.00...

Anak perempuan dengan seekor kucing peliharaanya. Kucing domestik adalah hewan yang populer saat ini. Saat ini sudah ada ratusan juta kucing dipelihara oleh manusia. Kucing juga digunakan dalam perdagangan bulu, makanan, dan untuk mengendalikan hama. Hewan peliharaan Kucing adalah hewan peliharaan yang umum dan paling banyak dipelihara di Eropa dan Amerika Utara. Populasi kucing di seluruh dunia sangat sulit untuk dipastikan, dengan perkiraan antara 200 juta hingga 600 juta ekor.[1]&#...

 

 

Localisation des Seychelles. Les personnes lesbiennes, gays, bisexuelles et transgenres (LGBT) aux Seychelles font face à des difficultés légales que ne connaissent pas les résidents non-LGBT. Homosexualité L'ancien article 151 du Code pénal des Seychelles disposait[1] : Toute personne qui - (a) a une relation charnelle avec toute personne contre l'ordre de la nature; ou * * * * (c) permet à un homme d'avoir une relation charnelle... contre l'ordre de la nature, est coupable d'un ...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2021) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها...

Андрій Кесарійськийгрец. Ανδρέας Καισαρείας Καππαδοκίας Святитель Андрій КесарійськийОсновні відомостіНародження 563(0563)Кайсері, ТуреччинаКраїна:  Візантійська імперіяКонфесія: православ'яСмерть: 637(0637)Праці й досягненняРід діяльності: священнослужительОсновні ін...

 

 

Method of communication for those with deafblindness This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (December 2016) (Learn how and when to remove this template message) Tactile signing is a common means of communication used by people with deafblindness. It is based on a sign language or another system of manual communica...

 

 

  هذه المقالة عن مدينة زاوية الشيخ في المغرب. لمعانٍ أخرى، طالع زاوية الشيخ (توضيح). زاوية الشيخ زاوية الشيخ[1](بالفرنسية: Zaouiat Cheikh)‏[1]  الموقع الجغرافي تقسيم إداري البلد المغرب[2] الولاية تادلة أزيلال الإقليم إقليم بني ملال خصائص جغرافية إحداثيات 32°39′15″N...

2018 documentary by Jack Bryan Active MeasuresFilm posterDirected byJack BryanWritten byJack BryanMarley ClementsNarrated byJuliet StevensonCinematographyNeil BarrettEdited byAndrew NapierRelease date 2018 (2018) (United States) Running time109 minutesCountryUnited StatesLanguageEnglishBox office$52,620[1] Active Measures is a 2018 documentary film by director Jack Bryan.[2] The documentary centered on Russian interference in the 2016 U.S. election, and looks at the m...

 

 

French environmentalist political party You can help expand this article with text translated from the corresponding article in French. (January 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider add...

 

 

Ruined Norman castle in Shropshire, England Bridgnorth CastleShropshire, England Bridgnorth Castle in 2008Bridgnorth CastleCoordinates52°31′53″N 2°25′12″W / 52.5314°N 2.4201°W / 52.5314; -2.4201Grid referencegrid reference SO716927TypeCastleSite informationOpen tothe publicYesConditionRuinedSite historyIn use1101-1646EventsEnglish Civil War Bridgnorth Castle is a castle in the town of Bridgnorth, Shropshire. It is a scheduled monument, first ...

Town in the state of Florida, United States For other uses, see Palm Beach (disambiguation). Town in Florida, United StatesPalm Beach, FloridaTownTown of Palm BeachPalm Beach in 2011 FlagSealLocation in Palm Beach County and the state of FloridaShow Palm BeachShow FloridaShow the United StatesCoordinates: 26°42′54″N 80°02′22″W / 26.715°N 80.039444°W / 26.715; -80.039444Country United StatesState FloridaCounty Palm BeachSettled (Lake Worth Settleme...

 

 

西尾市の起点付近。西尾自動車学校の近く。 愛知県道294号西尾小川線(あいちけんどう294ごう にしおおがわせん)は愛知県西尾市を起点とし、同県安城市小川町に至る一般県道である。 概要 短距離路線であるが、矢作川を越えて両市を結ぶ国道・県道が4本しかないうちの1つである。なお、起点から間もなく矢作川の志貴野橋南方で国道23号と立体交差するが、接続は...

 

 

2011 single by KelisBraveSingle by Kelisfrom the album Flesh Tone ReleasedJanuary 6, 2011 (2011-01-06)Recorded2009StudioCasa de Kelis (Los Angeles, California)GenreEDMelectro houseLength3:19LabelInterscopewill.i.am Music GroupSongwriter(s)Kelis RogersWilliam AdamsJean BaptisteJames FauntleroyProducer(s)Benny BenassiAlle BenassiKelis singles chronology Scream (2010) Brave (2011) Bounce (2011) Brave is a song recorded by American recording artist Kelis for her fifth studio album,...

Former American space corporation In this article, USA refers to the United Space Alliance, not the United States. Not to be confused with United Launch Alliance. United Space AllianceTypeLimited liability companyIndustrySpaceFoundedAugust 1995Defunct20 December 2019 HeadquartersHQ in Houston, Texas, locations in FL, AL, DCKey peopleMichael J. McCulley (CEO 2003–2007)ProductsSpaceflight operationsRevenueUS $2.0 billion (2005)[citation needed]Number of employees2,800 (2012)Paren...

 

 

Protein-coding gene in the species Homo sapiens NPBWR2IdentifiersAliasesNPBWR2, GPR8, Neuropeptides B/W receptor 2, neuropeptides B and W receptor 2External IDsOMIM: 600731 HomoloGene: 128565 GeneCards: NPBWR2 Gene location (Human)Chr.Chromosome 20 (human)[1]Band20q13.33Start64,103,802 bp[1]End64,107,565 bp[1]RNA expression patternBgeeHumanMouse (ortholog)Top expressed insuperior frontal gyrusprefrontal cortexdorsolateral prefrontal cortexBrodmann area 9pituitary gland...

 

 

Targeted genocide of Isaaq clan members in Somalia in 1987–1989 Isaaq genocidePart of Somaliland War of IndependenceExhumed skeletal remains of victims of the Isaaq genocideLocationSomali Democratic RepublicDate1987 to 1989TargetIsaaq populationAttack typeGenocidal massacre, state crime, mass murder, forced disappearanceDeaths50,000–100,000[1][2][3][4][5][6][7][8]High estimates range between 100,000 and 200,000[9][...

Type of sailboat SkipperSkipper 14 DinghyClass symbolDevelopmentDesignerPeter Milne (boat designer)NameSkipperBoatCrew1-2HullTypeMonohullConstructionGlassfiber moldingHull weight160 lb (73 kg)LOA13 ft 11 in (4.24 m)Beam5 ft (1.5 m)RigRig typeBermudaSailsMainsail area70.05 sq ft (6.508 m2)Jib/genoa area13.45 sq ft (1.250 m2)[edit on Wikidata] The Skipper Dinghy is a centerboard class of sailing dinghies designed by Peter Miln...

 

 

Species of insect Wart-biter Adult female of the green morph male Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Orthoptera Suborder: Ensifera Family: Tettigoniidae Subfamily: Tettigoniinae Tribe: Decticini Genus: Decticus Species: D. verrucivorus Binomial name Decticus verrucivorus(Linnaeus, 1758) Sound of Decticus verrucivorus Field recording in the Netherlands 30s Problems playing this file? See media help. The wart-biter (Dectic...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!