Angular velocity

Angular velocity
Common symbols
ω
SI unitrad ⋅ s−1
In SI base unitss−1
Extensive?yes
Intensive?yes (for rigid body only)
Conserved?no
Behaviour under
coord transformation
pseudovector
Derivations from
other quantities
ω = dθ / dt
Dimension

In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as angular frequency vector,[1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.[2]

The magnitude of the pseudovector, , represents the angular speed (or angular frequency), the angular rate at which the object rotates (spins or revolves). The pseudovector direction is normal to the instantaneous plane of rotation or angular displacement.

There are two types of angular velocity:

  • Orbital angular velocity refers to how fast a point object revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the origin. [citation needed]
  • Spin angular velocity refers to how fast a rigid body rotates with respect to its center of rotation and is independent of the choice of origin, in contrast to orbital angular velocity.

Angular velocity has dimension of angle per unit time; this is analogous to linear velocity, with angle replacing distance, with time in common. The SI unit of angular velocity is radians per second,[3] although degrees per second (°/s) is also common. The radian is a dimensionless quantity, thus the SI units of angular velocity are dimensionally equivalent to reciprocal seconds, s−1, although rad/s is preferable to avoid confusion with rotation velocity in units of hertz (also equivalent to s−1).[4]

The sense of angular velocity is conventionally specified by the right-hand rule, implying clockwise rotations (as viewed on the plane of rotation); negation (multiplication by −1) leaves the magnitude unchanged but flips the axis in the opposite direction.[5]

For example, a geostationary satellite completes one orbit per day above the equator (360 degrees per 24 hours)a has angular velocity magnitude (angular speed) ω = 360°/24 h = 15°/h (or 2π rad/24 h ≈ 0.26 rad/h) and angular velocity direction (a unit vector) parallel to Earth's rotation axis (, in the geocentric coordinate system). If angle is measured in radians, the linear velocity is the radius times the angular velocity, . With orbital radius 42,000 km from the Earth's center, the satellite's tangential speed through space is thus v = 42,000 km × 0.26/h ≈ 11,000 km/h. The angular velocity is positive since the satellite travels prograde with the Earth's rotation (the same direction as the rotation of Earth).

^a Geosynchronous satellites actually orbit based on a sidereal day which is 23h 56m 04s, but 24h is assumed in this example for simplicity.

Orbital angular velocity of a point particle

Particle in two dimensions

The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.

In the simplest case of circular motion at radius , with position given by the angular displacement from the x-axis, the orbital angular velocity is the rate of change of angle with respect to time: . If is measured in radians, the arc-length from the positive x-axis around the circle to the particle is , and the linear velocity is , so that .

In the general case of a particle moving in the plane, the orbital angular velocity is the rate at which the position vector relative to a chosen origin "sweeps out" angle. The diagram shows the position vector from the origin to a particle , with its polar coordinates . (All variables are functions of time .) The particle has linear velocity splitting as , with the radial component parallel to the radius, and the cross-radial (or tangential) component perpendicular to the radius. When there is no radial component, the particle moves around the origin in a circle; but when there is no cross-radial component, it moves in a straight line from the origin. Since radial motion leaves the angle unchanged, only the cross-radial component of linear velocity contributes to angular velocity.

The angular velocity ω is the rate of change of angular position with respect to time, which can be computed from the cross-radial velocity as:

Here the cross-radial speed is the signed magnitude of , positive for counter-clockwise motion, negative for clockwise. Taking polar coordinates for the linear velocity gives magnitude (linear speed) and angle relative to the radius vector; in these terms, , so that

These formulas may be derived doing , being a function of the distance to the origin with respect to time, and a function of the angle between the vector and the x axis. Then: which is equal to: (see Unit vector in cylindrical coordinates).

Knowing , we conclude that the radial component of the velocity is given by , because is a radial unit vector; and the perpendicular component is given by because is a perpendicular unit vector.

In two dimensions, angular velocity is a number with plus or minus sign indicating orientation, but not pointing in a direction. The sign is conventionally taken to be positive if the radius vector turns counter-clockwise, and negative if clockwise. Angular velocity then may be termed a pseudoscalar, a numerical quantity which changes sign under a parity inversion, such as inverting one axis or switching the two axes.

Particle in three dimensions

The orbital angular velocity vector encodes the time rate of change of angular position, as well as the instantaneous plane of angular displacement. In this case (counter-clockwise circular motion) the vector points up.

In three-dimensional space, we again have the position vector r of a moving particle. Here, orbital angular velocity is a pseudovector whose magnitude is the rate at which r sweeps out angle (in radians per unit of time), and whose direction is perpendicular to the instantaneous plane in which r sweeps out angle (i.e. the plane spanned by r and v). However, as there are two directions perpendicular to any plane, an additional condition is necessary to uniquely specify the direction of the angular velocity; conventionally, the right-hand rule is used.

Let the pseudovector be the unit vector perpendicular to the plane spanned by r and v, so that the right-hand rule is satisfied (i.e. the instantaneous direction of angular displacement is counter-clockwise looking from the top of ). Taking polar coordinates in this plane, as in the two-dimensional case above, one may define the orbital angular velocity vector as:

where θ is the angle between r and v. In terms of the cross product, this is:

[6]

From the above equation, one can recover the tangential velocity as:

Spin angular velocity of a rigid body or reference frame

Given a rotating frame of three unit coordinate vectors, all the three must have the same angular speed at each instant. In such a frame, each vector may be considered as a moving particle with constant scalar radius.

The rotating frame appears in the context of rigid bodies, and special tools have been developed for it: the spin angular velocity may be described as a vector or equivalently as a tensor.

Consistent with the general definition, the spin angular velocity of a frame is defined as the orbital angular velocity of any of the three vectors (same for all) with respect to its own center of rotation. The addition of angular velocity vectors for frames is also defined by the usual vector addition (composition of linear movements), and can be useful to decompose the rotation as in a gimbal. All components of the vector can be calculated as derivatives of the parameters defining the moving frames (Euler angles or rotation matrices). As in the general case, addition is commutative: .

By Euler's rotation theorem, any rotating frame possesses an instantaneous axis of rotation, which is the direction of the angular velocity vector, and the magnitude of the angular velocity is consistent with the two-dimensional case.

If we choose a reference point fixed in the rigid body, the velocity of any point in the body is given by

Components from the basis vectors of a body-fixed frame

Consider a rigid body rotating about a fixed point O. Construct a reference frame in the body consisting of an orthonormal set of vectors fixed to the body and with their common origin at O. The spin angular velocity vector of both frame and body about O is then

where is the time rate of change of the frame vector due to the rotation.

This formula is incompatible with the expression for orbital angular velocity

as that formula defines angular velocity for a single point about O, while the formula in this section applies to a frame or rigid body. In the case of a rigid body a single has to account for the motion of all particles in the body.

Components from Euler angles

Diagram showing Euler frame in green

The components of the spin angular velocity pseudovector were first calculated by Leonhard Euler using his Euler angles and the use of an intermediate frame:

  • One axis of the reference frame (the precession axis)
  • The line of nodes of the moving frame with respect to the reference frame (nutation axis)
  • One axis of the moving frame (the intrinsic rotation axis)

Euler proved that the projections of the angular velocity pseudovector on each of these three axes is the derivative of its associated angle (which is equivalent to decomposing the instantaneous rotation into three instantaneous Euler rotations). Therefore:[7]

This basis is not orthonormal and it is difficult to use, but now the velocity vector can be changed to the fixed frame or to the moving frame with just a change of bases. For example, changing to the mobile frame:

where are unit vectors for the frame fixed in the moving body. This example has been made using the Z-X-Z convention for Euler angles.[citation needed]

Tensor

The angular velocity tensor is a skew-symmetric matrix defined by:

The scalar elements above correspond to the angular velocity vector components .

This is an infinitesimal rotation matrix. The linear mapping Ω acts as a cross product :

where is a position vector.

When multiplied by a time difference, it results in the angular displacement tensor.

See also

References

  1. ^ Cummings, Karen; Halliday, David (2007). Understanding physics. New Delhi: John Wiley & Sons Inc., authorized reprint to Wiley – India. pp. 449, 484, 485, 487. ISBN 978-81-265-0882-2.(UP1)
  2. ^ "Angular velocity | Rotational Motion, Angular Momentum, Torque | Britannica". www.britannica.com. Retrieved 5 October 2024.
  3. ^ Taylor, Barry N. (2009). International System of Units (SI) (revised 2008 ed.). DIANE Publishing. p. 27. ISBN 978-1-4379-1558-7. Extract of page 27
  4. ^ "Units with special names and symbols; units that incorporate special names and symbols".
  5. ^ Hibbeler, Russell C. (2009). Engineering Mechanics. Upper Saddle River, New Jersey: Pearson Prentice Hall. pp. 314, 153. ISBN 978-0-13-607791-6.(EM1)
  6. ^ Singh, Sunil K. Angular Velocity. Rice University. Retrieved 21 May 2021 – via OpenStax.
  7. ^ K.S.HEDRIH: Leonhard Euler (1707–1783) and rigid body dynamics

Read other articles:

GyeongjuPoster teatrikalSutradaraZhang LuProduser Na Gyeong-chan Kim Dong-hyun Zhang Lu Ditulis oleh Zhang Lu PemeranPark Hae-il Shin Min-ahSinematograferCho Young-jikPenyuntingKim Hyeong-juDistributorInvent D (Korea Selatan)M-Line Distribution (seluruh dunia)Tanggal rilis 12 Juni 2014 (2014-06-12) Durasi149 menitNegara Korea Selatan Tiongkok Bahasa Korea Gyeongju (Hangul: 경주) adalah film komedi romantis Korea Selatan tahun 2014 yang ditulis dan disutradarai oleh Zhang Lu, d...

 

 

Species of snake Many-horned adder Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Reptilia Order: Squamata Suborder: Serpentes Family: Viperidae Genus: Bitis Species: B. cornuta Binomial name Bitis cornuta(Daudin, 1803) Synonyms[2] Vipera cornuta Daudin, 1803 Vip[era]. lophophris Cuvier, 1829 Vip[era]. lophophrys — Wagler, 1830 Vipera lophophris — Gray, 1831 Cerastes co...

 

 

De Grote Bosatlas, 50e editie 1988 De Dam Holwerd-Ameland in de Bosatlas van 1877 De Bosatlas is de overkoepelende naam voor een reeks Nederlandse atlassen. Deze atlassen behoren tot de meest gebruikte in het Nederlandse onderwijs. Vooral De Grote Bosatlas en De Kleine Bosatlas (ook wel De Basis Bosatlas geheten) zijn in Nederland bekend. Uitgaves ervan werden jarenlang verzorgd door Wolters Kluwer, die in 2007 de educatieve tak verkocht, waarbij werd bedongen dat dat de naam Wolters door de ...

Ne doit pas être confondu avec Music Hole (film). Cet article est une ébauche concernant un album. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Music Hole Album de Camille Sortie 7 avril 2008 Genre Chanson Label Virgin Music Albums de Camille Le Fil(2005) Ilo Veyou(2011)modifier Music Hole est le troisième album de Camille, sorti le 7 avril 2008. Il est écrit et produit en collaboration avec MaJi...

 

 

Ali Adil Shah ISultanBerkuasa1558–1579PendahuluIbrahim Adil Shah IPenerusIbrahim Adil Shah IIKematian1579[1]BijapurPemakamanAli Ka RouzaWangsaWangsa OsmanNama lengkapAbul Muzaffar Ali Adil ShahAyahIbrahim Adil Shah IIbuPutri dari Asad Khan Lari (Khusrow)AnakIbrahim Adil Shah II, putra angkat.AgamaSyiah Ali Adil Shah I (1558–1579) adalah Sultan kelima dari Kesultanan Bijapur. Pada hari pengangkatannya, Ali menyingkirkan praktik-praktik Sunni dan mengenalkan kembali Khutbah Syi’ah...

 

 

Johannes Diderik van der Waals Vật lý vật chất ngưng tụ Pha · Chuyển pha * QCP Trạng thái vật chấtChất rắn · Chất lỏng · Chất khí · Ngưng tụ Bose–Einstein · Khí Bose · Ngưng tụ Fermion · Khí Fermi · Chất lỏng Fermi · Siêu rắn · Siêu lỏng * Tinh thể thời gian Hiện ứng phaTham số thứ b...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2018) هوارد ماثيوز معلومات شخصية الميلاد 29 نوفمبر 1885(1885-11-29) الوفاة 9 فبراير 1963 (عن عمر ناهز 77 عاماً)أولدهام  الطول 5 قدم 8 بوصة (1.73 م)[1][1] مركز الل

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Sumaryato KayatmoLahir23 November 1942SurakartaWarga negaraIndonesiaOrang tuaRaden Mas Soemaryato ayah Sumaryato Kayatmo lahir di Surakarta, Jawa Tengah pada tanggal 23 November 1942. Sumaryanto adalah anak kedua dari enam bersaudara. Riwayat pendidika...

 

 

この項目「メキシカーナ航空704便墜落事故」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:2022年10月20日時点の英語版記事) 修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2023年2月) メキシ...

American baseball player (born 1950) Baseball player Hank WebbPitcherBorn: (1950-05-21) May 21, 1950 (age 73)Copiague, New York, U.S.Batted: RightThrew: RightMLB debutSeptember 5, 1972, for the New York MetsLast MLB appearanceOctober 2, 1977, for the Los Angeles DodgersMLB statisticsWin–loss record7–9Earned run average4.31Strikeouts71 Teams New York Mets (1972–1976) Los Angeles Dodgers (1977) Henry Gaylon Matthew Webb (born May 21, 1950) is a former pi...

 

 

Ini adalah nama Batak Pakpak, marganya adalah Bancin. Makmur Syahputra BancinBupati Aceh Singkil ke-1Masa jabatan2007 – 15 Oktober 2011PresidenSusilo Bambang YudhoyonoGubernurIrwandi YusufWakilKhazaliPendahuluHasdaruddin (Pj.)PenggantiKhazaliMasa jabatan2000–2005PresidenAbdurrahman WahidMegawati SoekarnoputriSusilo Bambang YudhoyonoGubernurAbdullah PutehAzwar Abubakar (Pj.)WakilMuadz VohryPendahuluTidak ada, jabatan baruPenggantiHasdaruddin (Pj.) Informasi pribadiLahir(1956-1...

 

 

1989 video gameCasino KidNorth American cover artDeveloper(s)SofelPublisher(s)SofelArtist(s)Tadao NomuraComposer(s)Toshio MuraiPlatform(s)NESReleaseJP: January 6, 1989NA: October 1989Genre(s)CasinoMode(s)Single-player Casino Kid is a casino video game for the Nintendo Entertainment System released in 1989. It was developed and published by Sofel. In Japan, the game was released as $1,000,000 Kid: Maboroshi no Teiou Hen (100万$キッド 幻の帝王編) and is based on the manga series $1,0...

Historic site in Merseyside, EnglandHill BarkFrontage of Hill BarkLocationFrankby, Wirral, Merseyside, EnglandCoordinates53°21′50″N 3°08′05″W / 53.3639°N 3.1346°W / 53.3639; -3.1346OS grid referenceSJ 244 858Built1891Built forRobert William HudsonRebuilt1928–31Restored byRees & HoltArchitectGrayson & OuldArchitectural style(s)VernacularGoverning bodyHillbark Hotel Listed Building – Grade II*Designated5 June 1963Reference no.1242748 Location...

 

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Dezembro de 2021) Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontes fiáveis e independentes. —Encontre fon...

 

 

Fictional Marvel Comics superhero For the Golden Age version of the Blue Marvel, see Marvel Boy (Robert Grayson). Comics character Blue MarvelArtwork from Age of Heroes #3.Depicting from left: King Hyperion vs. Blue Marvel.Art by M. C. Wyman.Publication informationPublisherMarvel ComicsFirst appearanceAdam: Legend of the Blue Marvel #1(November 2008)Created byKevin Grevioux (writer)Mat Broome (artist)In-story informationAlter egoAdam Bernard BrashearSpeciesHuman mutatePlace of originEarthTeam...

1992 studio album by Vanessa Paradis Vanessa ParadisStudio album by Vanessa ParadisReleased21 September 1992Recorded1992StudioWaterfront (Hoboken, New Jersey)LabelRemarkProducerLenny KravitzVanessa Paradis chronology Variations sur le même t'aime(1990) Vanessa Paradis(1992) Live(1994) Singles from Vanessa Paradis Be My BabyReleased: September 1992 Sunday MondaysReleased: January 1993 Natural HighReleased: May 1993 Just as Long as You Are ThereReleased: July 1993 Vanessa Paradis is the th...

 

 

Public university in London, England This article needs to be updated. Please help update this article to reflect recent events or newly available information. (March 2019) University of East LondonUniversity of East London Coat of ArmsMottoLatin: Scientia et votorum impletioMotto in EnglishKnowledge and the fulfilment of vowsTypePublicEstablished1898 – West Ham Technical Institute1952 – West Ham College of Technology1970 – North East London Polytechnic1989 – Polytechnic of East ...

 

 

1813 battle during the War of the Sixth Coalition Battle of the KatzbachPart of the German campaign of the Sixth CoalitionBattle of the Katzbach by Eduard KaempfferDate26 August 1813[1]Locationnear Liegnitz, Prussia51°06′17″N 16°05′57″E / 51.10472°N 16.09917°E / 51.10472; 16.09917Result Russo-Prussian victoryBelligerents Kingdom of Prussia Russian Empire French EmpireCommanders and leaders Gebhard von Blücher Ludwig Yorck Osten-Sacken Jacques ...

British landowner and politician Sir Richard Mill, 5th Baronet (c. 1689–1760) of Woolbeding House, Sussex was a British landowner and politician who sat in the House of Commons between 1721 and 1747. Woolbeding House Mill was the second son of Sir John Mill, 3rd Baronet of Woolbeding and his wife Margaret Grey, daughter. of Thomas Grey of Woolbeding. He succeeded his brother John in the baronetcy in 1706 [1] He matriculated at St John's College, Oxford on 12 March 1708, aged 18.[...

 

 

Teesside trolleybus systemA Teesside trolleybus passing Dorman Long's Cleveland Iron Works, South Bank, Middlesbrough, July 1970OperationLocaleTeesside, North East EnglandOpen8 November 1919 (1919-11-08)Close18 April 1971 (1971-04-18)StatusClosedRoutes3Operator(s)Tees-side Railless Traction BoardInfrastructureElectrification550 V DCStock21 (maximum)StatisticsRoute length9.2 mi (14.8 km) The Teesside trolleybus system once served the conurbation of Teess...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!